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Micro-abstract: 

 

Immune checkpoint inhibitors are a well-established treatment option for advanced urothelial carcinoma, 

and biomarkers of response are needed for better patient selection. We show that metastatic disease 

confined to lymph nodes is associated with better outcomes, while metastases to liver, bone or both are 

associated with poor outcomes with immune checkpoint inhibitor therapy. Results are hypothesis-

generating but relevant to practice. 

 



 

 

Abstract 
 

Background: Sites of metastasis have prognostic significance in advanced urothelial carcinoma (aUC), 

but more information is needed regarding outcomes based on metastatic sites in patients treated with 

immune checkpoint inhibitors (ICI). We hypothesized that presence of liver/bone metastases would be 

associated with worse outcomes with ICI. 

 

Methods: We identified a retrospective cohort of patients with aUC across 26 institutions, collecting 

demographics, clinicopathological, treatment, and outcomes information. Outcomes were compared with 

logistic (observed response rate; ORR) and Cox (progression-free survival; PFS, overall survival; OS) 

regression between patients with/without metastasis beyond lymph nodes (LN) and those with/without 

bone/liver/lung metastasis. Analysis was stratified by 1st or 2nd+ line.  

 

Results: We identified 917 ICI-treated patients: in the 1st line, bone/liver metastases were associated with 

shorter PFS (HR: 1.65 and 2.54), OS (HR: 1.60 and 2.35, respectively) and lower ORR (OR: 0.48 and 

0.31). In the 2nd+ line, bone/liver metastases were associated with shorter PFS (HR: 1.71 and 1.62), OS 

(HR: 1.76 and 1.56) and, for bone-only metastases, lower ORR (OR: 0.29). In the 1st line, LN-confined 

metastasis was associated with longer PFS (HR: 0.53), OS (HR:0.49) and higher ORR (OR: 2.97). In the 

2nd+ line, LN-confined metastasis was associated with longer PFS (HR: 0.47), OS (HR: 0.54), and higher 

ORR (OR: 2.79); all associations were significant.  

 

Conclusion: Bone and/or liver metastases were associated with worse, while LN-confined metastases 

were associated with better outcomes in patients with aUC receiving ICI. These findings in a large 

population treated outside clinical trials corroborate data from trial subset analyses. 

 

Keywords: bladder cancer, urothelial carcinoma, immune checkpoint inhibitors, outcomes, metastasis 
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Introduction  
 

Locally advanced/unresectable or metastatic (herein described as ‘advanced’) urothelial carcinoma (aUC) 

can cause significant morbidity and mortality. Recently there have been major advances in the 

management of aUC with the use of immune checkpoint inhibitors (ICI) in the frontline, switch 

maintenance and salvage settings1,2, as well as antibody-drug conjugates (enfortumab-vedotin, 

sacituzumab-govitecan) and the FGFR inhibitor erdafitinib in the salvage setting3–5. However, the 

observed response rates (ORR) and progression-free survival (PFS) achieved with ICI remain modest 

across treatment settings, while there is a considerable risk of immune related adverse events (IRAEs)1. 

This status emphasizes the need for the discovery and validation of accurate both prognostic and 

predictive biomarkers to help select patients more likely to benefit and reduce (or delay) ICI exposure to 

those who are unlikely to benefit. While predictive biomarkers have higher value in patient selection for 

particular therapies and optimal sequencing of agents in aUC, prognostic biomarkers can still help inform 

discussions about prognostic estimates, as well as in clinical trial design, stratification, and interpretation 

of results.  

 

There have been several proposed clinical and molecular putative biomarkers associated with survival 

with ICI in aUC6–11. Several clinical factors, such as performance status, sites of metastasis (e.g. liver) 

albumin and hemoglobin levels have been shown to hold prognostic value for patients receiving ICI in the 

first (1st) line setting10. Moreover, data from clinical trials and retrospective studies suggest that patients 

with liver and bone metastasis who receive ICI have overall poor outcomes12–14. A retrospective study 

also has suggested that bone metastasis at time of aUC diagnosis is associated with  poor outcomes with 

ICI.15  

 

However, questions remain regarding the response and outcomes with ICI based on specific sites of 

metastasis and line of therapy, when adjusting, as possible, for other known prognostic factors. 

Additionally, data on the association between lung metastasis and response or outcomes with ICIs in aUC 

remains scarce at this point. Presence of liver, bone or lung metastases could potentially be associated 

with immunosuppression and poor response and outcomes with ICI. To further investigate the association 

between metastatic sites and outcomes with ICI, we evaluated response and survival with ICI in patients 

with aUC according to metastatic site. We hypothesized that response and survival with ICI would be 

inferior in patients with metastases not confined to lymph nodes (LNs), especially those with liver and/or 

bone metastases, as opposed to patients with LN-confined metastatic disease. We also hypothesized that 

there would be a significant interaction between the co-presence of liver and bone metastases regarding 

outcomes with ICI. 

 

  

Patients & methods 
 

Study design, patients and data collection 

 

In concordance with the Declaration of Helsinki and after obtaining institutional review board approval, 

we performed a retrospective cohort study, using a cohort of patients from 25 institutions across the 

United States and Europe.10,16–18 Consecutive patients at each institution were identified using a 

combination of provider-driven and electronic health record search algorithms.  

 

Patients were included for analysis if they were treated with ICI monotherapy for aUC. We excluded 

patients who received ICI for a different cancer type or in a combination regimen or on a clinical trial, had 

pure non-urothelial histology, received more than one line of ICI therapy, or the sites of metastasis were 

unknown (Figure 1-Consort diagram). In addition, patients were excluded from the efficacy analysis, 

e.g. ORR, PFS, overall survival (OS) if the information regarding the endpoint was missing.  



 

 

 

For data collection and storage, we used web-based, secure and standardized REDCap capture tools 

hosted at the Institute of Translational Sciences at the University of Washington19,20. Data collected 

included demographics, stage, histology type, prior therapies for earlier UC settings, laboratory values, 

sites of metastatic disease, laboratory parameters and clinical endpoints (e.g. response, progression, 

death). For metastatic sites, we collected information about metastasis to the following sites: lymph node, 

soft tissue, lung, liver, bone, adrenal gland, CNS, peritoneum, intestine. Information on metastases on 

other miscellaneous sites outside of the categories above, was also collected. 

 

Pathology and radiology data were assessed from notes in the electronic health record based on 

comprehensive investigator review; no centralized review of images or pathology was feasible. All 

patients underwent imaging at the discretion of treating provider. Evaluation of response and progression 

were determined by the investigator review based on the best available information in clinic notes and 

radiographic study reports without formal central radiology review based on strict RECIST 1.1 criteria.  

 

Statistical analysis 

 

Baseline characteristics were summarized using descriptive statistics and compared via chi-square and 

Student's t-tests, for categorical and continuous variables, respectively. ORR was calculated as the 

number of patients with complete or partial response divided by the total number of patients. OS was 

defined as time from ICI initiation to date of death from any cause, and PFS as time from ICI initiation 

until date of radiographic or clinical progression or death from any cause. Patients who did not experience 

death or progression were censored at the date of last follow-up. 

 

All outcomes (ORR, PFS, OS) were analyzed separately for patients treated with ICI in the first line (1st) 

and the subsequent setting (second line and beyond; 2nd+). No patient with switch maintenance ICI was 

included. For our analysis, we created three separate models: in model A we compared patients with vs 

without LN confined metastasis; those with soft tissue recurrent/metastatic disease were classified as non-

LN confined; in model B, we compared patients with no bone or liver metastasis with those having bone-

only, liver-only, or both. We also tested the interaction between bone and liver metastases in this model, 

by modeling both bone and liver metastases as separate binary variables and including a multiplicative 

interaction term in the model. Finally, in model C, we compared patients with no bone, liver or lung 

metastasis with those having any combination of those three sites, such as liver-only, bone-only or lung-

only, bone and liver without lung, liver and lung without bone, bone and lung without liver, or all three 

sites together. We also tested for any interaction between these sites (bone-liver, bone-lung, liver-lung, 

and bone-liver-lung). 

 

We used univariable and multivariable logistic regression to estimate the odds ratios (OR) and confidence 

intervals (CI) for ORR dependent on exposure. For OS and PFS, we estimated median survival time using 

the Kaplan-Meier method. Hazard ratios (HR) dependent on exposure were calculated using univariable 

and multivariable Cox Regression. For multivariable modeling, we a priori identified factors 

hypothesized to possibly confound the relationship between metastatic site and efficacy endpoints (ORR, 

PFS, OS). We tested each factor independently in a model, retaining any variable for the final model that 

changed the outcome of interest (OR or HR) by >10%. The factors that were tested were age (as a 

continuous variable), sex (male, female), white race (yes, no), smoking history (yes, no), history of 

cystectomy [or (nephro)ureterectomy for upper tract UC] (yes, no), histology (pure urothelial carcinoma 

vs mixed), presence of upper tract urothelial carcinoma (yes, no) and ECOG PS (0-4, modeled as discrete 

categories) along with hemoglobin, albumin, and Neutrophil to Lymphocyte Ratio (NLR). Hemoglobin, 

albumin and NLR were all modeled as continuous variables. The alpha level was set at 0.05 for all 

analyses, which were performed with Stata IC 16.0 (Stata LLC, College Station, Texas). 

 



 

 

Results 
 

Patient characteristics  

 

We analyzed data from 1,283 patients with aUC treated with ICIs across 26 institutions between 2013-

2021. After exclusions, we identified 917 patients that were treated with ICI monotherapy for aUC. 

Ultimately, 886 were included in the ORR, 898 patients were included in the PFS and 876 in the OS 

analysis, respectively. Baseline characteristics of patients are shown on Table 1, stratified by line of 

therapy (1st and 2nd+). Among 504 patients treated with 1st line and 413 patients with 2nd+ line ICIs, pure 

urothelial histology was present in 69% and 74% of cases, respectively. At ICI initiation, LN-metastatic 

disease was present in 72% and 79% for 1st and 2nd+ line, respectively, while the prevalence of liver 

metastasis was 17% and 25% for 1st and 2nd+ line, of bone metastasis was 22% and 32%, and of lung 

metastasis was 32% and 39% respectively. (Table 1) Patient characteristics by site of metastasis (LN and 

bone, lung or liver) and line of therapy (1st or 2nd+) can be found in supplementary tables. (Table S1-S4). 

 

Observed Response Rate  

 

A total of 886 patients were included in the ORR analysis; of those, 479 received ICI in the 1st line and 

407 in the 2nd+ line. In the model A (“LN model”) analysis of both the 1st and 2nd+ lines, patients with LN-

only metastasis had a significantly higher ORR compared to those with disease spread beyond LNs. 

(Table 2). 

 

In the model B (“bone-liver model”) analysis, the presence of bone metastases, liver metastases or both 

were each significantly associated with lower ORR vs those without bone or liver metastases in the 1st 

line setting; among patients treated with ICI as 2nd+ line, only bone metastases were associated with a 

significantly lower ORR (Table 3). However, in our third model (Model C) only liver metastases retained 

a significant association with lower ORR in the 1st line. Similarly, in the 2nd+ line, only bone and bone & 

lung metastases showed a significant association with lower ORR. Lung-only metastases were not 

significantly associated with lower ORR (Table 4). We did not identify a significant interaction between 

the presence of bone, liver or lung metastases in either 1st or 2nd+ line setting.  

 

Progression-Free Survival 

 

A total of 898 patients were included in the PFS analysis; of those, 495 were treated with ICI in the 1st 

line and 403 in the 2nd+ line. In both treatment settings, the presence of LN-confined metastasis was 

significantly associated with longer PFS compared to non-LN confined metastasis (Table 2; Figure 2). 

 

In the model B (bone-liver) analysis, the presence of bone metastasis, liver metastasis or both were 

associated with shorter PFS compared to neither bone or liver, in both 1st line and 2nd+ line settings 

(Table 3). In Model C, liver-only metastasis, as well as co-presence of liver and bone, liver and lung, as 

well as liver, lung & bone metastases were associated with significantly shorter PFS in the 1st line setting. 

In the 2nd+ line, all those single sites (liver, lung, bone) of metastases as well as their combinations (liver-

bone, liver-lung, bone-lung, and liver-bone-lung) were significantly associated with shorter PFS (Table 

4). No significant interaction was detected between bone, liver or lung metastases for either 1st or 2nd+ 

line. 

 

Overall Survival 

 



 

 

A total of 876 patients were included in the OS analysis: 485 received 1st line ICI and 391 2nd+ line ICI. In 

the model A (LN model) analysis, patients treated with 1st line or 2nd+ ICIs with LN-confined metastasis 

had significantly longer OS compared to those without LN-confined metastasis (Table 2; Figure 3). 

 

In the model B (bone-liver) analysis, patients with bone metastases, liver metastases or both had shorter 

OS compared to patients without either bone or liver metastases in both 1st line and 2nd+ line settings 

(Table 3; Figure 3). In the model C, liver-only metastases, along with bone and liver, lung and liver, as 

well as co-occurrence of bone, liver and lung metastases were significantly associated with shorter OS in 

the 1st line setting. In the 2nd+ line, bone-only metastases along with all combinations (bone and lung, bone 

and liver, liver and lung, as well as bone-liver-lung) were significantly associated with shorter OS (Table 

4). Like ORR and PFS analyses, no significant interaction between liver and bone lesions was detected in 

either the 1st or the 2nd+ line. 

 

Discussion 
 

In this retrospective cohort of 917 patients with aUC treated with ICI outside clinical trials, we 

demonstrated that sites of metastases were associated with different outcomes on ICI therapy. 

Specifically, patients with aUC confined to LNs had significantly higher ORR, longer PFS and OS 

compared to patients without LN-confined disease, when treated with ICI as either 1st or 2nd+ line of 

therapy. Moreover, bone and liver metastases were associated with significantly lower ORR, shorter PFS 

and OS in both therapy settings. We did not identify a significant interaction between metastatic sites 

regarding outcomes with ICI therapy. 

 

Previous studies have reported the association between specific sites of metastases and treatment 

outcomes in aUC. In a widely used prognostic model, Bajorin et al. identified the presence of visceral 

metastasis and poor ECOG PS to be associated with shorter OS in patients treated with 1st line platinum-

based chemotherapy.8 Similarly, the prognostic model by Bellmunt et al. in patients with platinum-

refractory aUC treated with vinflunine chemotherapy identified liver metastasis, along with ECOG PS 

greater than 0 and Hgb<10 g/dL, as clinical factors associated with shorter OS. More recently, prognostic 

models developed in patients treated with ICI have also identified metastatic sites to have prognostic 

significance. A risk score developed by Khaki et al.10 using an earlier data-lock of this cohort and 

assessing prognostic factors for 1st line ICI treatment in aUC, showed that liver metastases were 

associated with worse prognosis. For those treated with ICI in the 2nd+ line, a 5-factor prognostic model 

for response to ICI also identified liver metastasis as associated with significantly shorter OS9, while 

another prognostic model by Nassar et al11. identified visceral metastasis as a poor prognostic feature.  

 

While multiple prior prognostic models have specifically identified liver metastasis as a poor prognostic 

factor, an important additional finding in our study is the similarly poor prognostic outcomes with bone 

metastasis. Bone metastasis has been recently identified as a risk factor for worse outcomes in aUC. 

Nelson et al. reported a significant association between the presence of early bone metastases (defined as 

present at the time of metastatic diagnosis) and shorter OS for patients receiving either chemotherapy or 

ICI for aUC. In a separate analysis comparing the effect of bone metastasis to treatment with ICI vs 

chemotherapy, no significant difference in survival was found, suggesting that presence of bone 

metastasis is a negative prognostic factor independent of treatment type. Of note, liver metastasis was also 

identified as a negative prognostic factor in that study21. In another study of patients with aUC treated 

with 2nd+ line ICI, Raggi et al. showed that bone metastasis was associated with significantly shorter OS 

and PFS22. 

 

Similarly, another study by de Liano Lista et al. showed that concurrent presence of bone and liver 

metastases, along with multi-metastatic disease (defined as ≥ 3 sites) was associated with shorter OS in 



 

 

patients with aUC treated with ICIs in the 1st line setting. The association persisted in the 2nd line, while 

the presence of liver-only and bone-only metastasis was significantly associated with shorter OS, while 

LN-confined metastasis was associated with longer OS23. Moreover, Ma et al. assessed 160 patients with 

urothelial or renal cell carcinoma treated with ICI and showed that the presence of liver metastasis was 

associated with significantly worse ORR, PFS and OS. Of interest, comparing liver to LN-confined 

metastasis, CNS or bone metastasis showed that patients with liver metastasis had worse outcomes24.  

 

In our study, we also investigated the putative association between lung metastasis and outcomes with 

ICI; interestingly, presence of lung, without liver or bone metastases, was significantly associated with 

shorter PFS only in the 2nd+ line setting. Lung metastasis was associated with worse outcomes when co-

present with liver and/or bone metastases. Results may suggest that lung-confined metastasis may not 

have the same magnitude as a negative prognostic factor in patients with aUC treated with ICI, but more 

studies are needed to evaluate this hypothesis. 

 

Subgroup analyses from clinical trials evaluating ICI in aUC are aligned with our findings. In the IMvigor 

210 trial, ORR with atezolizumab was 23% (95% CI:16-31) for the entire cohort 1 (consisting of 

cisplatin-ineligible patients without prior treatment for aUC), but numerically higher in patients with LN-

confined metastasis (n=31; 32% [95% CI:17-51]) and lower for those with liver metastases (n=25, 8% 

[95%CI: 1-26]). Median OS in patients with liver metastasis was also shorter (5.5 vs 15.9 months in all 

patients)12. In the Keynote 052 trial, patients with LN-confined metastasis (n=51) had higher ORR on 

pembrolizumab than those with visceral metastases (n=315): 47% (95% CI:31-62) vs 23% (95% CI:18-

29).13 In the Keynote 045 trial, while the HR for OS was <1 (favoring pembrolizumab vs salvage 

chemotherapy) for both patients with and without liver metastasis, HR for those with liver metastasis was 

higher (0.85 vs 0.67), which might suggest lower degree of benefit in this population, though the trial was 

not powered for these subgroup analyses.14  

 

Although the above subset analyses were purely exploratory and should not be over-interpreted due to the 

small sample size and number of events, they raise the hypothesis of worse outcomes in patients with 

non-LN metastases treated with ICI. These results in the context of our findings suggest that the spread of 

tumors beyond LNs may possibly herald a shift in cancer biology and/or suggest that the LN-confined 

metastasis could possibly be more sensitive to ICI due to a strong presence of immune cells in LNs. 

However, it is important to note that visceral (liver, lung or bone) metastasis appear as a negative 

prognostic factor since patients seem to have worse outcomes regardless of therapy, e.g. chemotherapy or 

ICI. Moreover, there are not adequate datasets to clarify the putative predictive role of metastatic site with 

regards to response and survival to individual therapies. The latter ‘predictive’ question requires further 

analysis in randomized trials and cannot be answered in single arm trials and retrospective studies.  

 

It is unclear whether the above findings could be attributed to underlying cancer biology/organotropism, 

such as increased clonal evolution, tumor heterogeneity, cancer burden, tumor mutation burden, quality of 

neoantigens, PD-L1 or other factors in the tumor microenvironment, and/or host-related factors, such as 

immunosuppression, T cell clonality and diversity, and other components of immune response25,26. 

Emerging evidence also suggests that differences exist on immune-related factors, such as tumor-

infiltrating lymphocytes and PDL1 expression on immune cells between primary tumors and metastatic 

sites27. Such immune heterogeneity across metastatic sites could pose significant treatment challenges. 

Disease heterogeneity seems to extend to a molecular level as well; recent work showed that MTAP-

deficient tumors seem significantly more likely to present with visceral metastasis, such as liver or lung, 

and are associated with worse prognosis with ICI28. Another study on heterogeneity following 

chemotherapy showed that chemotherapy-treated aUC had increased mutational variation between 

different clones, while clonal expansion of primary tumors happened early in the disease course29. 

Similarly, a recently developed model/score of clinical (NLR ≥5, visceral metastasis) and molecular 

factors (Single-Nucleotide Variant, SNV <10) correlated with no benefit with ICI in patients with aUC11. 



 

 

Such findings require further validation in larger cohorts; they, however, may suggest a distinct molecular 

background associated with early visceral metastasis and poor outcomes with ICI, and could be useful in 

deciding optimal sequencing of ICI therapy in the future. 

 

Notably, in addition to ICI, other agents, such as enfortumab-vedotin, erdafitinib and sacituzumab-

govitecan have been approved by the FDA for treatment-refractory aUC. For patients with FGFR2 or 

FGFR3 activating mutation or fusion, the BLC 2001 single arm trial with erdafitinib showed an ORR 

40% in patients with progression on at least one prior course of chemotherapy. In this study, outcomes 

were similar among patients with liver (ORR 35% [95% CI: 14-56]) and bone metastasis (ORR 48% 

(95% CI: 26-69) compared to the overall population 4. Similarly, in a subgroup analysis of the EV201 

trial with 2nd line enfortumab-vedotin in cisplatin-ineligible patients previously treated with ICI, outcomes 

were similar between patients with or without liver metastasis; ORR in patients with liver lesions was 

48% (95% CI: 26-70) and 53% (95% CI: 40-65) for those without30. In the EV301 trial of EV for patients 

previously treated with platinum-based chemotherapy and ICI, HR for OS in patients with liver metastasis 

(HR: 0.66, 95% CI: 0.46-0.96) was similar to the HR for those without liver metastasis (HR: 0.73 95% 

CI:0.55-0.98). Similarly, in a real-world study of patients with aUC treated with enfortumab-vedotin 

(UNITE), patients with liver metastases demonstrated a higher ORR (64% vs 47%, p<0.05), but shorter 

OS (8.3 months, vs 15.7 months, p=0.05) compared to those without liver metastasis; the presence of 

bone metastases was not associated with a significant difference in ORR or OS in the UNITE study21. 

 

In the context of the above separate datasets, a potential application of our findings could be to help 

inform treatment decisions among patients with aUC based on metastatic sites31. For patients with bone 

and/or liver metastases, our data suggests poor response and survival with ICI. Recently, enfortumab-

vedotin received FDA approval after one or more prior lines of therapy in cisplatin-ineligible patients. 

Moreover, the THOR (NCT03390504) phase III trial is comparing erdafitinib to pembrolizumab in 

patients with platinum-refractory aUC harboring a susceptible FGFR alteration (results are pending). So 

far, there has been no head-to-head comparison between either antibody drug conjugate or erdafitinib vs 

ICI in the platinum-refractory setting.  Based on all the above considerations, therapeutic agents with 

higher ORR in patients with liver and/or bone metastasis could be possibly considered prior to use of ICI 

in this setting. 

 

Treatment with ICI may depend more on the immune system robustness compared to cytotoxic regimens; 

patients with advanced cancer may have less robust immune system, which might dampen response to 

ICI32. Recent trials with neoadjuvant ICI monotherapy (e.g. ABACUS, PURE-01) have showed 

promising results with high pathologic complete response rates33. Moreover, there have been practice-

changing data in the adjuvant and switch maintenance settings based on the Checkmate 274 and Javelin 

Bladder 100 phase III trials34,35. These findings, along with data on the limited efficacy of single-agent ICI 

in patients with visceral metastases and higher tumor burden might suggest that ICI used in earlier disease 

settings could possibly have greater benefit compared to the salvage setting. Several clinical trials have 

also investigated the role of ICI alone or combined with other systemic therapies and/or radiation in 

earlier disease settings, with promising results36–39. However, this hypothesis is not confirmed, while the 

role of ICI is evolving in UC. 

 

Our work has limitations inherent to its retrospective design, such as lack of randomization, possibility for 

selection bias, and residual confounding that cannot be measured or fully accounted for. Clinical 

practices, surveillance schedules and follow-up times may not be perfectly consistent across 26 different 

institutions. Additionally, no centralized review of pathology and imaging was feasible, but all 

participating sites were academic institutions with expert genitourinary medical oncologists, radiologists 

and pathologists. Although we tried to capture information on the extent of metastatic burden, detailed 

data on the number of distinct lesions per organ system, as well as their size, were not available. Sample 

size in many of the metastatic subgroups was also limited by low power (~10-30 patients). Response and 



 

 

progression to treatment were determined by systematic comprehensive chart review based upon clinical 

and radiological notes, while prespecified interval assessments using strictly the RECIST 1.1 criteria were 

not mandated. We did not capture data on switch maintenance ICI or on molecular biomarkers. However, 

our study has several strengths, including the utilization of real-world data outside clinical trials, a 

relatively large sample size, and participation of multiple institutions across two continents with a diverse 

patient population. 

 

In conclusion, we showed that in patients receiving ICI for aUC outside clinical trials, the presence of 

bone and/or liver metastasis was significantly associated with lower ORR, as well as shorter PFS and OS. 

Despite inherent limitations, these results are complementary to findings from relatively limited trial 

subset analyses and could possibly help inform therapeutic discussions, prognostic estimates, as well as 

the design, stratification, and interpretation of clinical trials with ICI in aUC. Future research is needed to 

further identify and validate not only prognostic, but also predictive, biomarkers that can help inform 

optimal use of ICI in patients with aUC. 
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Tables & Figures: 

 

 

 

 

Figure 1: Consort diagram 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2: Progression-Free Survival  

 

2a. Lymph Node (LN) model (model A) 

 

 

 

 

 

 

2b. Liver & Bone model (model B) 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3: Overall Survival  

 

3a. Lymph node (LN) model (model A) 

 

 

 

 
 

 

 

 

 

3b. Liver & Bone model (model B) 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 

 

 

Table 1: Patient population demographics 

  
First Line ICI 

N = 504 

Subsequent Line ICI 

N = 413 

Age at ICI initiation  71 (11) 68 (10) 

Sex Male 360 (71%) 313 (76%) 

 Female 144 (29%) 100 (24%) 

Smoking History No 162 (32%) 136 (33%) 

 Yes 339 (68%) 273 (67%) 

White race no 109 (22%) 89 (22%) 

 yes 395 (78%) 324 (79%) 

History of cystectomy or 

(nephro)ureterectomy 
No 210 (44%) 192 (50%) 

 Yes 268 (56%) 191 (50%) 

Histology  
Pure 

Urothelial 
344 (69%) 302 (74%) 

 
Mixed 

Urothelial 
158 (32%) 108 (26%) 

Hemoglobin <10mg/dl at ICI initiation No 371 (75%) 291 (72%) 

 Yes 124 (25%) 113 (28%) 

Prior platinum chemotherapy No 303 (60%) 29 (7%) 

 Yes 201 (40%) 384 (93%) 

ECOG PS at ICI initiation 0 121 (26%) 93 (25%) 

 1 211 (46%) 210 (57%) 

 2 112 (24%) 53 (14%) 

 3 14 (3%) 12 (3%) 

 4 2 (<1%%) 0 (0%) 

Bellmunt score at ICI initiation 0 90 (20%) 63 (17%) 

 1 228 (50%) 166 (46%) 

 2 117 (26%) 110 (30%) 

 3 17 (4%) 25 (7%) 

Site of Primary Tumor Bladder 410 (83%) 316 (79%) 

 Upper GU 25 (5%) 25 (6%) 

 Urethra 5 (1%) 4 (1%) 

 Renal Pelvis 39 (8%) 33 (8%) 

 Ureter 14 (3%) 24 (6%) 

Lymph node metastasis at ICI initiation no 143 (28%) 88 (21%) 

 yes 361 (72%) 325 (79%) 



 

 

 
 

Table 2: Lymph Node metastatic disease model: 
 

 Metastatic sites ORR OR PFS HR OS HR 

1ST line ICI Non LN - confined 

disease 

22 (18-26) reference 3 (3-4) 

 

reference 9 (7-12) 

 

reference 

 LN - confined 

disease 

45 (37-54) 

 
2.97 (1.92-

4.59)* 
 

11 (7-16) 

 
0.53 (0.41-

0.69)* 
 

22 (14-NR) 

 

0.49 (0.37-

0.65)* 
 

2nd line ICI or 

greater 

       

 Non LN - confined 

disease 

19 (15-23) 

 

reference 4 (3-4) 

 

reference 8 (6-9) 

 

reference 

 LN - confined 

disease 

38 (28-49) 

 
2.79 (1.50-

5.16) *# 
 

13 (6-21) 

 
0.47 (0.34-

0.65)* 

18 (11-NR) 

 
0.54 (0.38-

0.77)*β 

 

*: p<0.05 

#: adjusted for cystectomy and albumin at ICI initiation 

β: adjusted for albumin 

 

 

Table 3: Liver and bone metastatic disease model:  
 

*: p<0.05 

#: adjusted for cystectomy, site of primary (upper vs lower) and albumin at ICI initiation 

β: adjusted for albumin at ICI initiation 

γ: adjusted for ECOG PS at ICI initiation 

δ: adjusted for cystectomy, hemoglobin, albumin and NLR at ICI initiation  

Lung metastasis at ICI initiation no 342 (68%) 251 (61%) 

 yes 162 (32%) 162 (39%) 

Liver metastasis at ICI initiation no 420 (83%) 312 (76%) 

 yes 84 (17%) 101 (25%) 

Bone metastasis at ICI initiation no 394 (78%) 282 (68%) 

 yes 110 (22%) 131 (32%) 

 Metastatic 

sites 

ORR aOR PFS aHR OS aHR 

1st line ICI        

 No liver-bone 33 (28-39) Reference 9 (6-13) Reference 17 (13-21) Reference 

 Bone - only 21 (14-32) 0.48 (0.25-0.91)*# 3 (2-6) 1.65 (1.19-2.30)*β 7 (4-11) 1.60 (1.13-2.25)*γ 

 Liver - only 15 (7-28) 0.31 (0.13-0.75)*# 2 (2-3) 2.54 (1.77-3.66)*β 5 (3-7) 2.35 (1.66-3.34)*γ 

 Liver & bone 4 (1-22) 0.08 (0.01-0.06)*# 2 (1-3) 3.23 (1.96-5.32)*β 2 (1-5) 3.66 (2.31-5.79)*γ 

2nd line ICI 

or greater 

       

 No liver-bone 28 (23-35) Reference 6 (5-8) Reference 12 (9-15) Reference 

 Bone - only 12 (7-20) 0.29 (0.13-0.67)*δ 4 (3-5) 1.71 (1.28-2.28)*ε 7 (5-9) 1.76 (1.32-2.35)*ε 

 Liver - only 25 (16-37) 0.70 (0.34-1.45) δ 3 (2-6) 1.62 (1.09-2.41)*ε 7 (4-11) 1.56 (1.04-2.34)*ε 

 Liver & Bone 11 (4-27) 0.45 (0.15-1.39) δ 2 (2-3) 2.32 (1.34-4.03)*ε 3 (2-5) 2.53 (1.47-4.38)*ε 



 

 

ε: adjusted for cystectomy and NLR at ICI initiation 

 

 

Table 4: Liver, bone and lung metastasic disease model: 
*: p<0.05 

#: adjusted for cystectomy, site of primary (upper vs lower), albumin at ICI initiation and NLR at ICI initiation 
α: adjusted for cystectomy, site of primary (upper vs lower), and albumin at ICI initiation 
β: adjusted for cystectomy, site of primary (upper vs lower), ECOG at ICI initiation, albumin, hemoglobin and NLR at ICI initiation 
γ: adjusted for cystectomy, site of primary (upper vs lower), albumin, hemoglobin and NLR at ICI initiation 
δ: adjusted for cystectomy, albumin, hemoglobin and NLR at ICI initiation 
ε: adjusted for cystectomy, ECOG at ICI initiation, albumin, hemoglobin and NLR at ICI initiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Metastatic sites ORR aOR PFS aHR OS aHR 

1st line ICI        

 No liver-bone-

lung 37 (31-43) 

Reference 

7 (5-11) 

Reference 

17 (12-22) 

Reference 

 Bone - only 
20 (12-33) 0.48 (0.23-1.01)# 3 (2-5) 1.42 (0.93-2.16)α 7 (3-13) 1.55 (0.96-2.51)β 

 Liver - only 13 (5-29) 0.21 (0.06-0.72)*# 2 (1-3) 2.43 (1.55-3.83)*α 5 (3-14) 2.46 (1.54-3.94)*β 

 Lung-only 
26 (18-35) 0.69 (0.40-1.21)# 4 (3-6) 1.32 (0.96-1.83)α 18 (11-23) 1.25 (0.87-1.79)β 

 Liver & bone 
6 (1-32) 0.14 (0.02-1.04)# 1 (1-4) 2.09 (1.08-4.05)*α 2 (1-5) 2.81 (1.46-5.37)*β 

 Lung & bone 
24 (10-46) 0.31 (0.09-1.11)# 4 (1-12) 1.39 (0.71-2.74)α 11 (3-NR) 1.59 (0.80-3.14)β 

 Lung & liver 
19 (6-45) 0.33 (0.07-1.65)# 2 (2-3) 2.52 (1.40-4.55)*α 4 (2-7) 3.74 (2.11-6.62)*β 

 Lung, liver & 

bone 0 - 2 (0.2-2) 3.92 (1.77-8.70)*α 2 (0.2-13) 4.41 (2.19-8.88)*β 

2nd line ICI 

or greater 

       

 No liver-bone 32 (25-41) Reference 7 (5-10) Reference 14 (11-19) Reference 

 Bone - only 14 (7-25) 0.25 (0.09-0.72)*γ 4 (3-7) 1.75 (1.17-2.63)*δ 8 (5-10) 1.87 (1.24-2.82)*ε 

 Liver - only 24 (13-39) 0.49 (0.20-1.23)γ 3 (2-4) 2.20 (1.34-3.59)*δ 9 (4-14) 1.61 (0.93-2.80)ε 

 Lung-only 22 (15-32) 0.67 (0.33-1.36)γ 4 (3-6) 1.58 (1.10-2.28)*δ 8 (6-12) 1.33 (0.90-1.97)ε 

 Liver & Bone 9 (2-30) 0.28 (0.05-1.52)γ 2 (1-3) 2.91 (1.30-6.52)*δ 2 (2-5) 2.80 (1.21-6.44)*ε 

 Lung & bone 8 (3-23) 0.25 (0.07-0.87)*γ 3 (2-5) 2.49 (1.72-3.61)*δ 6 (4-9) 1.96 (1.31-2.95)*ε 

 Lung & liver 26 (12-47) 1.13 (0.34-3.83)γ 3 (2-3) 2.34 (1.27-4.33)*δ 4 (3-9) 2.14 (1.14-4.02)*ε 

 Lung, liver & 

bone 15 (4-45) 0.60 (0.13-2.80)γ 2 (1-3) 2.64 (1.24-5.60)*δ 3 (1-9) 2.78 (1.26-6.15)*ε 




