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by the New Ti–Zr (Roxolid®) Mini-Implants as Single-Units:
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Abstract: The new Ti–Zr (Roxolid®) mini-implants have not yet been fully researched. We analyzed
peri-implant and posterior edentulous area microstrains during mandibular overdenture (OD) load-
ing at different sites with different extents of forces when one-, two-, three-, or four- mini dental
implants (MDIs) as single-units supported the respective ODs. The models were designed from
cone beam computed tomography (CBCT) scans of an appropriate patient with narrow ridges. The
mucosal thickness was 2 mm. Strain gauges were bonded on the vestibular and oral peri-implant sites,
and in the distal edentulous area under the saddles. The loads were applied posteriorly bilaterally
and unilaterally with 50, 100 and 150 N forces, and anteriorly with 50 and 100 N forces. Each loading
was repeated 15 times. Statistical analysis included descriptive statistics, boxplots and the MANOVA.
Higher forces induced higher peri-implant microstrains, as well as unilateral loadings, especially
on the loaded side, in all models except the one-MDI model where anterior loads (100 N) elicited
the highest peri-implant microstrain (1719.35 ± 76.0). The highest microstrains during unilateral
posterior loading (right side) with 150 N force were registered from the right MDI in the two-MDI
model (1836.64 ± 63.0). High microstrains were also recorded on the left side (1444.48 ± 54.6). By
increasing the number of implants, peri-implant microstrains and those in the edentulous area de-
creased. In the three- and four-MDI models, higher microstrains were found in the posterior than
in the anterior MDIs under posterior loadings. None of the recorded microstrains exceeded bone
reparatory mechanisms, although precaution and additional research should be provided when only
one or two MDIs support ODs.

Keywords: Ti–Zr mini-implants; single units; strain gauges; mandibular overdenture; different
number of mini-implants; loading forces; loading position; dentistry; oral surgery

1. Introduction

In completely edentulous patients with a reduced alveolar ridge width, the insertion
of four mini-dental implants (MDI) for mandibular overdenture (OD) retention and sup-
port is the alternative option to the insertion of two standard-sized implants [1–11]. Bone
augmentation can be avoided by the insertion of narrow implants, which shortens the
duration of treatment, providing a less traumatic surgical protocol [1–5]. Narrow dental
implants (NDIs) are divided into three categories depending on their diameters: Category 3
(>3.3 mm–3.5 mm wide), Category 2 (>2.5 mm–<3.3 mm), and Category 1 (≤2.5 mm
wide) [12]. The one-piece mini-implants are listed in category 1, i.e., the narrowest NDI
category (diameter ≤ 2.5 mm) [12]. Narrow implants are usually made of Ti90Al6V4 alloy,
which has better mechanical properties than pure titanium. The insertion of four MDIs
made of Ti90Al6V4 alloy in the mandible has been approved as a successful treatment op-
tion for the retention of a mandibular OD in many prospective clinical studies [1–10,13–15].
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Even the insertion of only three MDIs in the mandible for complete OD retention showed
very good outcomes in a five-year clinical study [15]. Insertion of two MDIs showed good
survival rates and low amounts of marginal bone loss only when used for retention of
removable partial dentures [16–18]. However, the clinical outcomes of only two MDIs re-
taining a complete mandibular OD are still doubtful [19–22]. To the best of our knowledge,
no longitudinal clinical reports are available when only one MDI, inserted in the midline of
the mandible, was used for the retention of a complete OD.

In 2009, the Ti85Zr15 alloy (Roxolid®) was introduced by the company Straumann
Group. It showed very good mechanical properties and excellent osseointegration. More-
over, in many clinical prospective studies, narrow-diameter implants in categories 3 and 2
had very good performance when they supported fixed partial dentures [23–25]. Recently,
in 2019, the new mini-implant system (category 1 of narrow implants, 2.4 mm wide) made
of the Roxolid® (Ti–Zr) alloy (Straumann® Mini Implant System) was released on the dental
market. Innovation of the new Ti–Zr MDIs included the new retention system (Straumann®

Optiloc® Retentive System, i.e., prosthetic connection coated with an amorphous diamond-
like carbon surface (ADLC) and a female PEEK matrix insert incorporated into titanium
housing. The new mini-implant Ti–Zr system allows a choice of appropriate transmucosal
heights. Four Roxolid® MDIs have been proposed for the retention of a mandibular OD,
and six for the retention of a maxillary OD. Outcomes of four Roxolid® alloy MDIs retaining
a mandibular OD in a prospective clinical study are available only for one year of their
clinical use but with excellent results [26]. Due to the very good mechanical properties of
the new Ti–Zr mini-implant system and the excellent osseointegration of the alloy, it would
be interesting to find out whether less than the recommended four Ti–Zr mini-implants
inserted in the mandible as single-units can successfully support a mandibular OD. In vitro
studies are required before the safe clinical utilization of any new material, clinical tech-
nique or modification of any procedures [27–29]. Due to the difference in the stiffness of
the implant material and the bone, the highest stress is distributed at the implant–bone
interface. Peri-implant strains below 3000 microstrains represent the criterion for the long-
term survival of any implant supporting a denture [27]. A model mimicking the “in vivo”
situation and measuring peri-implant strains is beneficial to providing insights into the real
clinical situation.

Therefore, this “in vitro” study was designed to analyze microstrains around Ti–Zr
mini-implants as well as microstrains in the posterior edentulous area when different
numbers of single-unit MDIs were inserted. The respective ODs were loaded at different
sites and with different loading forces.

2. Materials and Methods
2.1. Mandibular Models

All experiments were performed on models of the same mandible. CBCT (ProMax
3D, Planmeca, Helsinki, Finland) scans of a completely edentulous patient with a narrow
residual ridge were chosen. A virtual model was created using the Amira software (Amira,
v4.1, Zuse Institute Berlin; Visage Imaging GmbH, Berlin, Germany). Mini-implant po-
sitions were planned using the Blender® software (Blender®, v2.79b, Amsterdam, The
Netherlands). Four models were designed: one model with four holes for the insertion of
four MDIs (in positions of previous first premolars and second incisors on the right and
left sides of the mandible). Another model had three holes for the insertion of three MDIs
(two posterior MDIs in the positions of previous distoproximal surfaces of the right and
left canines, and one anterior MDI in the midline of the mandible). One model had two
holes for the insertion of two MDIs (in positions of the previous left and right mandibular
canines). The fourth model was designed with only one hole in the midline for the insertion
of only one MDI. The length of the holes was 10 mm (equal to the length of the MDIs), while
the width of the holes was 2.3 mm, i.e., 0.1 mm narrower than the implant body diameter
(2.4 mm). The narrower diameter of the holes was to ensure the stability of implants in
the models.
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Stereolithographic 3D printing technology (Form 2, Formlabs, Somerville, MA, USA)
and Gray photopolymer resin (GRAY FLGPGR04; Formlabs, Somerville, MA, USA) were
used for all models. After printing, further processing included immersing the model in
95% isopropyl alcohol (IPA) (Izopropil alkohol, Medimon d.o.o., Split, Croatia) for one
minute and then additionally for 15 min in a new container of IPA to rinse the residual resin.
After cleaning, a 30-min polymerization with the 36 W UV-A halogen lights (Dentsply
Sirona Heliodent Plus, Display Sirona, York, PA, USA) and 30-min heating in a chamber at
60 ◦C were performed. All models of the mandible were made of the same material, which
is, according to its mechanical properties, similar to the D2 bone.

2.2. Implant Insertion and Artificial Mucosa

For each mandibular model, an artificial mucosa was made from vinyl-polysiloxane
impression material (3M™ Express™ XT Light Body Quick, Seefeld, Germany) of uniform
thickness (2 mm). To ensure uniform thickness, the molds into which the impression
material was injected were designed virtually (Amira v4.1, Zuse Institute Berlin; Visage
Imaging GmbH, Berlin, Germany) for the 2.0 mm thick mucosa with one, two, three or four
perforations at sites where the MDI insertions were planned. The molds were 3D-printed.
Impression material (a-silicone) was injected into each mold, and after setting, the artificial
mucosa was transferred to the respective model of the mandible, depending on the number
of holes.

In each hole (2.3 mm wide), an MDI with a diameter of 2.4 mm and a length of 10 mm
(Straumann® Mini Implant, Institute Straumann AG, Basel, Switzerland) was inserted.
The gingival MDI height of 2.8 mm (i.e., the height of the polished neck of the implant)
was chosen from the Straumann® Mini Implants. Mini-implants were inserted using the
torque wrench BLX Torque Control Device (Institute Straumann AG, Basel, Switzerland).
The insertion torque (measured using a torque wrench during insertion) varied for a very
small amount among MDIs (from 36 to 43 Ncm). The torque values recommended by the
manufacturer for immediate loading are ≥35 Ncm.

2.3. Overdenture Fabrication

After MDI insertion, the models were scanned (3Shape 3E, 3Shape, Copenhagen,
Denmark, 2020) to design the respective ODs. The design of the metal framework for the
dentures was generated using computer-aided design (CAD) technology in the 3Shape
software (3Shape, v.20.1, Copenhagen, Denmark). Four metal skeletons were created.
Printed metal frameworks were manufactured by Wironium® RP metal powder (BEGO,
Bremen, Germany) using Sisma Mysint100 Dual laser (Sisma, Piovene Rocchette, Italy).
After metal frameworks were finished, artificial teeth were set up (Cross-linked, Polident,
Nova Gorica, Slovenia) in a wax rim. Denture processing and acrylic resin polymerization
were conducted according to the manufacturer’s recommendation (Ivoclar ProBase Hot
Denture Resin, Ivoclar Vivadent, Schaan, Liechtenstein). Finally, the ODs were polished.
Metal housings for the Optiloc® (Institute Straumann AG, Basel, Switzerland) retention
matrices with the medium (yellow) retention inserts (1200 g of the retention force each)
were built in the overdenture simultaneously with the overdenture polymerization.

2.4. Strain Gauge Bonding

To measure peri-implant and posterior edentulous area microstrains, strain gauges
(SG) (KFGS-1N-120-C1-11N30C2, Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan)
were bonded using cyanoacrylate glue (Super Glue, NU Co., Ltd., Ningbo, China) to
provide fast strong bonding between the model and the SG. The acetate foil (Grafix Clear
Acetate, Grafix® Plastics, Maple Heights, OH, USA) served to press strain gauges firmly
against the model during the glue setting. The surfaces of the models were cleaned with
acetone (Aceton, Premifab d.o.o., Sveta Nedelja, Croatia) for better adhesion prior to strain
gauge bonding. Strain gauges were placed as close as possible to the neck of each MDI
on the vestibular and oral sides of each MDI. An additional pair of SGs was placed on the
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posterior edentulous area of the mandible at sites of previous second molars, i.e., slightly
anterior from the posterior end of the free-end overdenture saddles and tasked to register
strains under the OD saddles during denture loading (Figure 1A,B).
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Figure 1. (A). Schematic drawing of the peri-implant strain gauge positions and strain gauge positions
in the posterior edentulous area: (a). in the one-MDI model; (b). in the two-MDI model; (c). in the
three-MDI model; (d). in the four-MDI model; (B). The two-MDI model mounted on the stand during
bilateral overdenture loading of the mandibular overdenture in the position of the left and the right
artificial first molars.

The recording system EDX-10A v02.00 (Kyowa Electronic Instruments Co., Ltd., Tokyo,
Japan) was used in which all strain gauges were connected to the corresponding software
program (DCS-100A v4.6, Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan), which
allowed simultaneous monitoring and recording of deformations during measurements.

2.5. Model Fixation

The special stand was constructed for fixation of the mandibular models to simulate
the relation of the mandible to the skull (Figure 1B). Aluminum profile framework with
two round bars placed horizontally supported each model on the area corresponding to the
insertion of the masseter and mylohyoid muscles (lower bars), and in the mandibular notch
(upper bar) (the concavity between the processus condylaris and processus coronoideus)
simulating the temporomandibular joint (Figure 1B).

2.6. Overdenture Loading and Microstrain Registration

When the model was mounted on the stand, the metal screw was twisted to apply
pressure on the metal plate positioned on the OD’s artificial teeth, i.e., artificial molars
(Figure 1B). The ODs were loaded bilaterally (Figures 1B and 2a, metal plate on the first arti-
ficial denture molars), while the screw was connected at the same time to a force-measuring
cell, and the extent of the applied forces was measured. The ODs were also loaded unilater-
ally on the right side of the denture (unilateral loading, metal plate positioned at the right
artificial first molar), and anteriorly (metal plate positioned over anterior artificial incisors;
or frontal loading). As a summary, each OD was loaded in three positions: frontally (artifi-
cial incisor teeth), bilaterally (first molars on both sides of the mandible) and unilaterally
(right side molar) (Figure 2a–c).

Three different forces—50 N, 100 N and 150 N—were applied during bilateral and
unilateral loadings. Anterior loading was performed with only 50 N and 100 N forces.
The applied forces represent average chewing forces in patients wearing overdentures
supported by dental implants.
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Figure 2. (a–c). Schematic drawing of loads applied to mandibular overdentures retained by one,
two, three or four Ti–Zr mini-implants; (a). bilateral posterior OD loading in the model with four
mini-implants; (b). unilateral posterior OD loading in the model with four mini-implants; (c). anterior
(frontal) OD loading in the model with four mini-implants.

Microstrains were registered from the vestibular and oral peri-implant sites of each
MDI, and the posterior edentulous area under OD saddles. Peri-implant strain gauges were
positioned as close as possible to the implant. All loadings were performed at intervals of a
few seconds until the desired loading force was achieved, which was maintained for 2 s.
Microstrains in the edentulous area were recorded only under bilateral and unilateral poste-
rior loadings. The highest registered microstrains in each of the 15 repeated measurements
were entered into the database.

2.7. Statistical Analysis

Statistical analysis was performed using the SPSS 20.0 software (IBM Corporation,
Armonk, NY, USA). The Shapiro–Wilks W test was used to test the normality of the
distributions. The sample size calculation was done based on pilot measurements, which
revealed very small variations (standard deviations ranged between 6 and 15% of the mean
value). As the primary endpoint was to test the significance of the differences in loading
positions and loading forces and to compare one-, two-, three-, and four-MDI models, with
a presumption that the difference in the mean values will be between 15 and 30%, and with
alpha set at 0.05 and a power of 80% (beta = 0.2) [30,31], the calculated sample size varied
between 6 and 14 measurements. However, we decided to perform 15 measurements for
each loading force and each loading position.

Mean values and standard deviations were calculated. Boxplot diagrams were also
generated. The significance of the differences in the recorded peri-implant microstrains as
dependent variables with the loading site and the extent of the applied forces as factors
were tested using the MANOVA in each mandibular model: the one-, two-, three- and
four-MDI model. The Bonferroni post-hoc test was used. The significance of the differences
in the microstrains recorded from the right and left posterior edentulous area under denture
saddles as dependent variables with the loading force, loading position and the number
of mini-implants inserted as factors were tested using the MANOVA and Bonferroni post-
hoc tests.

3. Results

Boxplot diagrams of microstrains obtained from strain gauges bonded to vestibular
and oral peri-implant sites of mini-implants in the mandibular models with one, two, three
and four mini-implants, dependent on loading positions and loading forces, are presented
in Figures 3–6.
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Figure 3. Boxplot diagrams of microstrains registered from strain gauges bonded to vestibular and
oral peri-implant bones when only one mini-implant was inserted in the midline of the mandible.

Arithmetic means and standard deviations of microstrains obtained from strain gauges
bonded to vestibular and oral peri-implant sites in the mandibular model with one MDI,
dependent on the loading position and loading force, are presented in Figure 3 and
Supplementary Table S1.

Arithmetic means and standard deviations of microstrains obtained from peri-implant
strain gauges bonded to vestibular and oral sites of MDIs in the mandibular model with
two MDIs, dependent on the loading position and loading force, are presented in Figure 4
and Supplementary Table S2.

Arithmetic means and standard deviations of microstrains obtained from peri-implant
strain gauges bonded to vestibular and oral sites of MDIs in the mandibular model with
three MDIs, dependent on the loading position and loading force, are presented in Figure 5
and Supplementary Table S3.

Arithmetic means and standard deviations of microstrains obtained from peri-implant
strain gauges bonded to vestibular and oral sites of MDIs in the mandibular model with
four MDIs, dependent on the loading position and loading force, are presented in Figure 6
and Supplementary Table S4.

When only one MDI was inserted in the midline, the highest peri-implant microstrains
were recorded during anterior loading with 100 N forces from both vestibular and oral strain
gauges. Posterior loadings with 150 N forces also elicited high peri-implant microstrains.
The 2-factor MANOVA and Bonferroni post-hoc tests revealed that both loading forces
and loading position had a significant effect on the amount of recorded peri-implant
microstrains (p < 0.001, Supplementary Table S5a.,a.a.,a.b.).

In the two-MDI model of the mandible, the highest microstrains were recorded from
the vestibular and oral SGs of the MDI on the right side of the mandible under right-side
unilateral OD loading with 150 N forces. Unilateral forces elicited the highest peri-implant
microstrains in the right-side MDI, followed by the left-side MDI. The MANOVA and
Bonferroni post-hoc tests revealed that both loading forces and loading positions elicited
statistically significant effects on the amount of recorded peri-implant microstrains in the
two-MDI model (p < 0.001, Supplementary Table S5b.,b.a.,b.b.).
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In the three-MDI model, the highest microstrains were recorded from the right poste-
rior MDI under unilateral right side and bilateral loads, followed by the left MDI, while
lower microstrains were recorded from the MDI inserted in the midline. The recorded mi-
crostrains were lower than in the one- and two-MDI models. The MANOVA showed signif-
icant effects of various loading forces and different loading positions on the amount of peri-
implant microstrains in the three-MDI model (p < 0.001, Supplementary Table S5c,c.a.,c.b.).

In the four-MDI model, the highest microstrains were also recorded from the right-side
posterior MDI during unilateral loading (on the right side) with the highest applied force
(150 N). However, recorded microstrains were lower than in the one-, two- and even three-
MDI models. Significant effects of loading positions and loading forces on peri-implant
strains were shown by the MANOVA test (p < 0.001, Supplementary Table S5d,d.a.,d.b.).
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In the two-, three- and four-MDI models, unilateral and bilateral loadings elicited
significantly higher microstrains than anterior loadings. Unilateral loadings with the
highest force (150 N) applied on the right side of the respective OD elicited the highest
forces in the posterior right-sided MDI (p < 0.001).

Microstrains registered from the posterior edentulous area on the right and left sides
of the mandible under mandibular overdenture saddles in the one-, two-, three-, and four-
MDI overdenture models during posterior loadings are shown in boxplots in Figures 7–10
and Supplementary Table S6.
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Figure 5. Boxplot diagrams of microstrains registered from peri-implant strain gauges bonded to
vestibular and oral peri-implant bones when three mini-implants were inserted in the mandible; two
of them were inserted in the left and right distoproximal sites of previous mandibular canines and
one was inserted in the midline of the mandible.

Arithmetic means and standard deviations of microstrains obtained from strain gauges
bonded to posterior edentulous areas under denture saddles during OD loading in different
positions with different loading forces in the mandibular model with one MDI are presented
in Figure 7 and Supplementary Table S6.

Arithmetic means and standard deviations of microstrains obtained from strain gauges
bonded to posterior edentulous areas under denture saddles during OD loading in differ-
ent positions with different loading forces in the mandibular model with two MDIs are
presented in Figure 8 and Supplementary Table S6.
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Figure 6. Boxplot diagrams of microstrains obtained from strain gauges bonded to vestibular and oral
sites of peri-implant bones when four mini-implants were inserted in the mandible: two posterior
mini-implants were inserted at previous first premolar sites; two anterior mini-implants were inserted
at previous second incisor sites.
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Figure 8. Microstrains registered from the right and left posterior edentulous area under mandibular
overdenture saddles during posterior loadings in the two-MDI model (mini-implants inserted at
previous sites of mandibular canines).

Arithmetic means and standard deviations of microstrains obtained from strain gauges
bonded to posterior edentulous areas under denture saddles during OD loading in different
positions with different loading forces in the mandibular model with three MDIs are
presented in Figure 9 and Supplementary Table S6.
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Arithmetic means and standard deviations of microstrains obtained from strain gauges
bonded to posterior edentulous areas under denture saddles during OD loadings in differ-
ent positions with different loading forces in the mandibular model with four MDIs are
presented in Figure 10 and Supplementary Table S6.

Denture settling under posterior unilateral loadings elicited the highest edentu-
lous area strains in the one- and two-MDI models, while strains from the edentulous
area under denture saddles decreased with increasing number of implants (p > 0.001,
Supplementary Table S7). Microstrain values also increased under higher forces (p < 0.001).

The MANOVA and the Bonferroni post-hoc tests showed that the model was signifi-
cant, and all three factors (number of MDIs, loading position and loading force) elicited
significant effects (p > 0.001) on microstrain values registered from SGs in the posterior
edentulous area during OD loading (Supplementary Table S7a–c).

4. Discussion

New materials, new techniques and dental implant modifications, as well as many
other factors related to implant prosthodontic treatment innovations, need thorough in vitro
investigation before their safe clinical utilization [27–29]. Due to a lack of studies on in-
terface stress from implants on bone, which determines the strain level within the loaded
bone, in vitro studies to predict clinical outcomes and marginal bone loss from peri-implant
bones are crucial. Potential microfractures and bone remodeling can occur when displace-
ment during elastic deformation exceeds 150 microns [32]. The bone first compensates
for loads by forming more bone. Repeated stress with ≥3000 microstrains increases the
micro-damage and can overwhelm bone reparatory mechanisms [33].

The bone bed and the MDI material do not have the same modulus of elasticity, which
has a significant impact on peri-implant stress. Higher stiffness or higher elastic modulus
of the implant will result in a greater amount of periimplantbone loss. Roxolid® alloy
(Ti85Zr15) shows higher strength and resistance to fatigue compared to other titanium
alloys [34,35]. The Roxolid® alloy amortizes part of the forces with elastic deformation
during loading, thus reducing stress in the peri-implant bone [36].

Different numbers and positions of Ti90Al6V4 mini-implants supporting the mandibu-
lar OD have been studied in vitro [37]. Takagaki et al. [37] converted microstrains into
lateral forces through calibration. Lateral forces were higher in the model with two MDIs
inserted in the previous canine sites and in the four-MDI model compared with the one-
MDI model and the two-MDI model with MDIs inserted in the positions of previous lateral
second incisors. The applied loading force was only 49 N. Fewer mini-implants resulted in
less lateral stress on mini-implants, which was ascribed to increased mucosal support when
the number of mini-implants was reduced. However, a reduced number of implants caused
a greater transfer of forces to the bearing area, resulting in a greater load on the bone. On
the contrary, our study revealed lower amounts of peri-implant strains with increasing
numbers of implants. Lower strains in the posterior edentulous area were recorded when
more MDIs were present, which is in line with Takagaki et al. [37] (higher strains in the
edentulous area with reduced numbers of implants).

Guo et al. [22] found that peri-implant microstrains were 1.5 times higher when two
Ti-6Al-4V mini-implants supporting a mandibular OD (2.6 mm wide, 10 mm long) already
had peri-implant marginal bone loss than when there was no marginal bone loss. The
pressure on the posterior denture-bearing area was higher under the complete denture
than under the two mini-implant-supported OD, as well as the displacement of the denture
base. No significant differences in the posterior pressure and denture displacement were
registered between MDIs with peri-implant marginal bone loss and those without marginal
bone loss. Our study revealed higher strains both at the bone–implant interface and in the
edentulous area in the one- and two-MDI models than in the three- and four-MDI models.
Increasing the number of implants lowered the strains in the edentulous area under the
same loading forces.
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Warin et al. [38] emphasized a positive correlation between compressive forces and
the number of implants. According to their study, the highest compressive forces were
achieved with four MDIs that retained a mandibular OD, followed by three and two MDIs.
In the case of bilateral loading, the compressive forces were distributed symmetrically,
while in the case of unilateral loading, higher compressive forces were recorded on the side
where the load was applied. With unilateral loading, a compressive force was observed on
the distal side of the posterior MDI on the loaded side while a tensile force was observed
on the mesial side in the model with four MDIs. Our study also revealed the highest
peri-implant strains during unilateral loading (higher than during bilateral loading) on
the loaded side. However, an increased number of implants led to lower peri-implant
strains in our study. Bilateral loadings led to lower strains and more symmetrical strain
distribution compared with unilateral loadings. We assumed that bilateral loads were
equally distributed between MDIs on the left and the right sides of the mandible. Higher
strains registered during posterior loadings around posterior MDIs (closer to the loading
site) in the three- and four-MDI models than around anterior MDIs can be attributed to
a higher extent of forces transferred to the closer implants, eliciting higher peri-implant
strains on the bone. Unilateral posterior loads elicited higher strains on the loading side
and in posterior implants. The highest strains recorded around the right-side implant
during right-side unilateral loadings can be ascribed to the transfer of the majority of
forces to the neighboring implant. As implants are stiffer than the cortical bone, strains
appear in the bone near the implant–bone interface. The left side of the OD received
obviously fewer loads during the unilateral loading of the OD on the right side, although
microstrain peri-implant values were still high. This can be ascribed to the strong retention
of the attachments of the new Ti–Zr mini-implant system (giving a denture more support)
than the resilient O-ring attachment system in the Ti-6Al-4V mini-implants. Therefore,
loads were transferred through the overdenture to the implants inserted on the left side.
With more resilient “O” ring attachments and Ti-6Al-4V mini-implants, compressive peri-
implant strains were recorded on the opposite side [38]. In the one-MDI model, the midline
MDI showed the highest strains during anterior loading, even with forces of only 50 or
100 N, as the midline implant was closest to the anterior loading forces, just below the OD
loading site.

It has been reported that retention force and attachment wear in mini-implant-retained
ODs could be improved by increasing the mini-implant number [39–41]. Knowing that,
and accounting for lower peri-implant and edentulous area strains registered in this study,
we favor the utilization of three or four MDIs, especially given that the displacements
and stresses are higher with mini-implants than with conventional standard-sized c-Ti
implants [40].

Fatalla et al. [41] reported in their finite element analysis (FEA) that three Ti-6Al-4V
MDIs retaining a mandibular OD with flexible acrylic attachments showed a lower level of
Von Mises stress compared to four Ti-6Al-4V MDIs with the O-ring attachments.

Our study showed slightly lower peri-implant strains in the four-MDI model than
in the three-MDI model, and almost equal strains in the posterior edentulous area, with
no significant differences between the three and four new Ti–Zr MDIs for overdenture
retention and support.

Very small variations in MDI insertion torque (approximately 5 Ncm) between mini-
implants inserted at different sites in the models can be attributed to small differences
in alveolar ridge morphology and width. The models were made from a material with
characteristics of the D2 bone density, which is the most frequent in the anterior mandible
between the left and right mental foramina [42].

In this study, all strain measurements were made on the models of the mandible
mimicking the real patient’s situation, with a favorable mucosa thickness. A height of
2 mm or less for artificial mucosa was used in other studies [37,43]. Anterior loadings were
performed using 50 and 100 N, while posterior loadings were performed using 50, 100 and
150 N forces due to the fact that the magnitude of chewing forces in the anterior region
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are lower than in the premolar and molar regions [44]. The extent of loading forces [45]
applied in this study represents average chewing forces in subjects with implant-supported
ODs [46]. Chewing forces are lower in conventional complete dentures and vary from 30 to
50 N [46], but are much higher in subjects with their own teeth or fixed partial dentures [44].

The differences between the results of this study and other studies on biomechanical
behavior [37,38,47–54] may be due to different mini-implant materials (Ti–Zr vs. Ti-Al6-V4),
different retention mechanisms (Optiloc® Retentive System vs. “O”-ring), different implant
designs and neck widths [55], different dimensions of implants [56,57], small differences
in strain measurements and different residual ridge forms. We bonded strain gauges as
close as possible to the implant–bone interface due to the assumption that stress and strains
would be highest where two materials with different stiffnesses meet. The cyanoacrylate
glue was recommended by the strain gauge manufacturer and was also used in other
studies utilizing SGs. Some experimental results indicate that SGs used with the same
adhesive gave consistent deformation values, while different glues (cyanoacrylate, epoxy)
led to different values under the same conditions [58]. Therefore, it is important to use
the same glue as in other similar studies to be able to compare the results. Moreover, the
adhesive thickness should be the lowest possible and should be uniformly applied. A
linear relationship between adhesive thickness and strain error has been found [58]. For
this reason, we used acetate foil to firmly press strain gauges against the model during the
glue setting to have the thinnest possible glue layer. One of the limitations of this study is
that we could not control the glue thickness completely.

The new Ti–Zr (Roxolid®) Mini-Implant system utilizes binary titanium alloy with
approximately 15% Zr, which is an α alloy with a closely packed hexagonal crystallographic
structure and represents a completely solid solution [35,36,59], contrary to Ti-6Al-4V trinary
alloy, which consists of α and β phases (closely packed hexagonal and body-centered cubic
crystals) [59,60]. A solid solution of a Ti–Zr alloy allows better and faster cell adhesion and
faster and better osseointegration. There is no degradation of potentially cytotoxic vana-
dium. However, both alloys have similar mechanical properties [59,60]. An elastic modulus
of the Roxolid® alloy is reported to be 96.12 ± 2.82 GPa, significantly lower than that of
titanium [60], while according to Brizuela et al. [35,36] it varies between 102 and 104.7 GPa,
with a Poisson coefficient of 0.33. The Roxolid® alloy has similar elastic characteristics to the
Ti-6Al-4V alloy (110–115 GPa) but with a higher tensile strength [35,36]. The cortical bone
modulus of elasticity is only 15 GPa [35,36]. The hardness value of Ti by nanoindentation
was 2.38 ± 0.13 GPa and that of Ti–Zr Roxolid® alloy was 3.19 ± 0.09 GPa [60]. Medvedev
et al. [61] reported the yield strength of the Roxolid® alloy to be 799 ± 26 MPa, and the
ultimate tensile strength to be 968 ± 2.6, higher than that of grade four Ti, but similar to
that of the Ti-6Al-4V alloy (970 MPa). The data on the mechanical properties of these alloys
show a certain amount of variability, as reported in different studies [62]. All microstrains
reported in this study represented the peak (maximum) microstrains during the two-second
OD loading interval after the desired loading force had been achieved. The maximum
strain values during the 2 s loading period were chosen because the applied force varied
by a very small amount during the 2 s. Additionally, repeated strains can interfere with
bone reparatory mechanisms even in the range of 1500–3000, which corresponds to mild
overloads [33]. However, none of the maximum microstrains registered in the present
study exceeded a value of 3000, when bone reparatory mechanisms can be jeopardized.
However, in a real patient situation, chewing forces can be greater than in this study [44,45],
especially in subjects with natural teeth in the maxilla and in those with bruxing habits. Due
to the fact that microstrains increase under higher loading forces, higher chewing forces
may elicit higher strains in a real patient situation compared with this study, especially
when keeping in mind that the magnitude of chewing forces is inversely correlated with
proprioception [44]. Moreover, in a real clinical situation, the attached mucosa is not of
uniform thickness and consistency. Various mucosal thicknesses can be found at different
alveolar ridge sites in the same subject. Sometimes even a flabby ridge can be present. All
these complicate denture micromovements under loads, and thus the direction and distri-
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bution of the transferred forces. Therefore, higher strains can be elicited in a real-patient
situation compared with those recorded in the present study, or strains can be repeated
more frequently. Additionally, implant inclination (parallel in this study) may be different
in a real-patient situation due to the morphology of the alveolar bone, and all this can
influence the distribution of loads and consequent strains in the peri-implant and posterior
edentulous area bone. The bone density in real patients can be lower than the D2 density
in this study, which would lead to a larger difference in the elasticity modulus between
the implant and the bone, as the low-density bone has a lower elasticity modulus than the
cortical bone. We mimicked a near-ideal patient situation. Therefore, the aforementioned
facts represent the study’s limitations and should be addressed in future research.

Because high strains were recorded during anterior loading in the one-MDI model,
even under small forces, the utmost precaution should be taken in such clinical situations
due to the possibility of implant overloading under higher forces and more unfavorable
alveolar ridge morphology, lower bone density or mucosa thickness. In subjects with
two MDIs, the highest strains were recorded under unilateral 150 N loads. Strains may
be even higher under higher OD loading forces and in less favorable clinical situations
(uneven mucosal heights and consistency, lower bone density, etc.). Therefore, it is very
important to advise patients to chew bilaterally, especially when a low number of implants
is present. In the three- and four-MDI models, peri-implant and edentulous area strains
were far from those that could interfere with the bone reparatory mechanisms. Therefore,
three or four Ti–Zr mini-implants can be used clinically for retention of mandibular OD
without too much fear of failure. Additionally, the dimensions of implants [56,57], mucosa
thickness, height and consistency, residual ridge morphology, bone density, overdenture
characteristics, and extent and direction of chewing forces [44–46] play an important role
in stress and strain distribution. Therefore, future studies are needed to complete the
overview of mandibular overdentures retained by Ti–Zr mini-implants.

The limitation of the study is that the models represent only an average case scenario of
possible situations in a “real” mouth. However, higher loading forces, different thicknesses
and consistencies of the mucosa and inclination of MDIs could lead to different results
and should be studied further. We also could not fully control all parameters, e.g., glue
thickness, as SGs were manually bonded. Different bone densities could also influence the
results and should be studied further. Additionally, the elastic modulus of a metal plate
transferring loads to ODs could influence the results.

The strength is that this study is the first one to analyze the new mini-implant system
made from the Roxolid® (Ti–Zr) dental alloy with a new innovative retention mechanism
(Optiloc® Retentive System) when varying the number of inserted implants for retention
and support of mandibular ODs.

5. Conclusions

Within the limitations of the study, we can arrive at the conclusion that the increased
number of MDIs reduces the amount of microstrains around implants and in the posterior
edentulous area. The highest microstrains were achieved under 150 N forces and unilateral
loading in the two-MDI model. In the one-MDI model, anterior loading with both 50 and
100 N elicited higher peri-implant microstrains than posterior loads. Posterior loads elicited
higher peri-implant microstrains around the posterior than anterior MDIs. Unilateral
loadings elicited higher strains than bilateral loads, especially in implants on the loaded
side. In the posterior edentulous areas, the highest microstrains were recorded in the
one- and two-MDI models. Although none of the recorded strains interfered with bone
reparatory mechanisms, precautions should be taken, and additional investigations should
be conducted for the one- and two-MDI models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app14052150/s1.
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3. Čelebić, A.; Peršić, S.; Kovačić, I.; Buković, D.; Lešić, N.; Rener-Sitar, K. Comparison of Three Prosthodontic Treatment Modalities
for Patients with Periodontally Compromised Anterior Mandibular Teeth: A 2-Year Follow-up Study. Acta Stomatol. Croat. 2019,
53, 4–16. [CrossRef]

4. Elsyad, M.A.; Gebreel, A.A.; Fouad, M.M.; Elshoukouki, A.H. The Clinical and Radiographic Outcome of Immediately Loaded
Mini Implants Supporting a Mandibular Overdenture. A 3-Year Prospective Study: CLINICAL AND RADIOGRAPHIC
OUTCOME OF MINI IMPLANTS. J. Oral Rehabil. 2011, 38, 827–834. [CrossRef]
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