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Abstract: Gender determination of the human remains can be very challenging, especially in the
case of incomplete ones. Herein, we report a proof-of-concept experiment where the possibility of
gender recognition using Raman spectroscopy of teeth is investigated. Raman spectra were recorded
from male and female molars and premolars on two distinct sites, tooth apex and anatomical
neck. Recorded spectra were sorted into suitable datasets and initially analyzed with principal
component analysis, which showed a distinction between spectra of male and female teeth. Then,
reduced datasets with scores of the first 20 principal components were formed and two classification
algorithms, support vector machine and artificial neural networks, were applied to form classification
models for gender recognition. The obtained results showed that gender recognition with Raman
spectra of teeth is possible but strongly depends both on the tooth type and spectrum recording
site. The difference in classification accuracy between different tooth types and recording sites are
discussed in terms of the molecular structure difference caused by the influence of masticatory
loading or gender-dependent life events.

Keywords: Raman spectroscopy; multivariate statistical methods; principal component analysis;
support vector machine; artificial neural network; forensic dentistry; gender determination

1. Introduction

Identification, the process of establishing the identity of human remains, is the first
step in any medicolegal investigation regarding the remains of unknown identity [1].
The need for identification of human remains arises in different settings of armed conflicts,
natural mass disasters, and migrant crises as well as in everyday work of forensic doctors.
The importance of identification of human remains has ethical and humanitarian aspects as
well as administrative. In forensic cases, without establishing the identity, no meaningful
investigation can be conducted.

The identification process differs wildly with respect to the state of the remains.
In cases of skeletal remains, the first step is establishing the biological profile—Defining
physical characteristics of individual: ancestry, gender, age, and stature. Because many
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methods of age and stature recognition are gender dependent, gender recognition is the
essential and primary part of any identification [2]. Establishing the gender of the remains
is not only necessary in skeletal remains, but also when only body parts are available
for analysis.

Gender recognition is based on sexual dimorphism of skeleton between male and
female, pertaining mainly to the size and shape of the body as well as to the differences
in growth and development pattern. So far, three different groups of gender recognition
techniques are available—morphological, osteometric, and biological. Morphological
methods use visual examination of the presence or degree of expression of qualitative traits
that are more or less specific for female or male sex. The pelvis and skull are the bones
mostly used in this group of methods with reliability of over 95% in complete pelvis and
approximately 80% with skull only [3]. These methods tend to be subjective, are prone to
decrease in accuracy in incomplete or fragmented remains and are highly dependable on the
investigators experience. Osteometric methods use quantitative measures, usually breadth
and length of bones and parts of bones, which are significantly different within male and
female sex. Osteometric methods are more objective in essence, but often suffer from intra
and inter observer discrepancies [4]. Biological (molecular) methods use polymerse chain
reaction (PCR) techniques of DNA amplification and most often analyze the amelogenin
gene, the SRY gene on the Y chromosome, and the DYS14 gene [5]. These are the most
reliable gender recognition methods, but also most expensive and time consuming.

The importance of gender recognition as well as the difficulties encountered on the
way are best illustrated by the extent of research conducted on the topic. Almost every bone
was the subject of either morphologic or osteometric assessment and, at this point, there are
no field-wide best practices and guidelines that indicate which method should or should
not be used to estimate gender [6]. Since a great amount of forensic or archeological skeletal
material is either incomplete, fragmentary, damaged, commingled, burned, immersed
in sea, and so on, various methods are helpful at some point. Subsequently, the fact is
that we often use several different methods in order to estimate gender as accurately
as possible in given circumstances. In addition to the above-mentioned disadvantages,
sexual dimorphism of skeletal remains of subadults (until the end of puberty) is far less
pronounced and gender recognition represents at the very least a challenge, and often is
simply inadequate without using biological methods [7].

A great number of research analyzed teeth in order to investigate the possibility of
gaining information useful for the identification process. In incomplete, fragmentary, dam-
aged, commingled, or burned remains, very often teeth are present and preserved. Teeth are
the hardest, most lasting tissue of the human body and are usually found undamaged [8].
In addition, in forensic and archeological scenarios often only the skull is available for the
analysis. The conducted research established that numerous useful information could arise
from teeth analysis—gender and age recognition, ancestry, and even stature prediction [9].
As stated by several studies, teeth show a high degree of sexual dimorphism, and different
morphological and odontometric methods of gender recognition are in use [10].

Forensic dentistry employs a wide range of analytical tools for gender determina-
tion [11–15]. The traditional methods are based on quantitative or qualitative evaluations
of craniofacial and dental morphological features [16]. Dental morphometric gender-
determination methods commonly include regression analyses of mesiodistal and buc-
colingual tooth dimensions, or identification of the presence of certain gender-specific
morphological features on crowns of canines or mandibular molars [10]. Unlike craniofa-
cial differences that are markedly pronounced between genders, sexual dimorphism in teeth
is less distinctive, leading to lower reliability of forensic dental gender-determination meth-
ods. Generally, the reliability of tooth morphometric methods is population-dependent and
impaired by high within-group variability, which limits their accuracy [17]. More accurate
gender determination methods based on tooth samples include the identification of the Barr
body from dental pulp [18], amplification of X- or Y-chromosome specific DNA sequences
using polymerase chain reaction [19], or identification of gender-specific differences in
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enamel matrix protein, amelogenin [20]. Despite being virtually 100% accurate, these
molecular analysis methods require destructive specimen preparation and irreversible
consumption of tooth tissues. A more conservative, non-destructive analysis such as that
offered by Raman spectrometry performed on outer tooth surfaces without any previous
sample preparation has clear advantages for forensic purposes.

Results of our previous work [21] regarding age determination by using Raman
spectra of teeth indicated the existence of differences between spectra of females and
males. In the present work, this fact was utilized by building gender recognition models
i.e., for distinguishing male and female teeth. For that purpose, Raman spectra from
different tooth types recorded at two different sites (apex and anatomical neck) were used
for classification model generation with two different algorithms, support vector machine
(SVM) and artificial neuron network (ANN).

2. Materials and Methods
2.1. Teeth Sampling

The teeth belong to the collection of the Department of Dental Anthropology School
of Dental Medicine University of Zagreb. As an integral part of the regular practice of
informed consent at the clinic, all donors agreed that their teeth can be retained and used
for research. No personal data and other identifying information about donors have been
disclosed to the investigators. The collection and handling of biological material were
conducted in full accordance with the World Medical Association Declaration of Helsinki
regarding ethical principles for medical research involving human subjects. The soft tissues
that remained after tooth extraction were removed using a plastic brush and the teeth
were disinfected by soaking in a 1% formaldehyde solution for 24 h. Thereafter, the teeth
were stored dry in dark containers at room temperature (23 ± 3 ◦C) in the archive of
the Department of Dental Anthropology of the School of Dental Medicine, University of
Zagreb, Croatia. The sample of 55 teeth (19 premolars and 36 molars) used for this study
was obtained by a random draw from the aforementioned archive (Table A1, Appendix A).
The age of tooth donors ranged between 11 and 76 years. The teeth had been extracted
due to various indications, the most common being periodontitis and failed endodontic
treatment. To simulate a forensic analysis of teeth at different post-extraction time periods,
the time span between extraction and performing Raman spectroscopic measurements
ranged between 0.1 and 5.5 years. No special selection criteria (either inclusion or exclusion)
were applied; teeth affected with various pathological processes were deliberately included
to simulate a realistic sample.

2.2. Raman Measurements and Pre-Processing

Raman spectra were recorded using an FT-Raman accessory of the Spectrum GX
spectrometer (Perkin-Elmer, Waltham, MA, USA) equipped with an Nd:YAG laser with
a wavelength of 1064 nm. Each spectrum was recorded by averaging 100 scans in the
spectral range between 3500 and 200 cm−1 and with a spectral resolution of 4 cm−1. Spectra
were collected from two distinct sites on each tooth: apex and distal part of anatomical
neck. At each tooth site, an area of 2.5 mm in diameter was chosen, over which the
excitation laser spot (0.25 mm in diameter) was moved in a scanning motion to collect
Raman spectra from 10 different positions i.e., spots. This was done in order to account for
local heterogeneities of mineralized tooth tissues. Therefore, a total of 20 spectra per tooth
were collected (2 sites × 10 spectra). Finally, several spectra with low signal-to-noise ratio
were removed. The spectra were stored in a dataset and connected with the donor’s gender
and collection site. All spectra were baseline corrected and normalized using the peak at
960 cm−1 (symmetric PO4 stretching) to exclude possible differences caused by variations
in recording conditions. Finally, to remove spectra variations mostly due to fluctuations
of recording conditions, an advanced preprocessing technique, generalized least squares
weighting (GLSW), was applied [8,22–24].
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2.3. Statistical Analysis

In order to access the ability of gender recognition by Raman spectroscopy, multivari-
ate statistical methods were used on Raman spectra of teeth; first, decomposition of original
data by principal component analysis (PCA) (MATLAB R2010b, The Mathworks Inc., Nat-
ick, MA, USA, with its add-on PLS_Toolbox, Eigenvector Research, Manson, WA, USA),
and second, classification of data by Support Vector Machine (SVM) and Artificial Neural
Network (ANN) algorithms (RapidMiner Studio 9.9, RapidMiner GmbH, Dortmund, Ger-
many). For data decomposition, pre-processed Raman spectra in the 3500–200 cm−1 region
were used to build 6 distinct PCA models with 1–20 principal components; 4 models with
respect to tooth type and collection site (molar apex, molar anatomical neck, premolar apex,
and premolar anatomical neck) and 2 “joint” models with both tooth types mixed together
(molar + premolar apex and molar + premolar anatomical neck). Data arrays utilized for
PCA models included absorbance values of all the wavenumbers in the 3200–200 cm−1

region and the used parameters were the singular value decomposition (SVD) algorithm,
cross validation venetian blinds with 10 splits, and the generalized least squares weighting
(GLSW) filter declutter threshold set to 0.02 (program default setting). Next, the dimension-
ality reduction of spectroscopic data was obtained by selecting scores of first 20 principal
components from each of the aforementioned PCA models. These first 20 PC scores were
then used for further calculation i.e., classification of data with respect to donor’s gender
by means of SVM and ANN algorithms. Four SVM and four ANN models with respect
to tooth type and collection site were built: Molar apex, molar anatomical neck, premolar
apex, and premolar anatomical neck (for each model 1–20 PCs was used). For the purpose
of model assessment, spectra were divided into two datasets, where approximately 83% of
all spectra were used as a calibration set, and the rest was used as a validation set. Addi-
tionally, all ANN and SVM models were cross-validated with the 10-fold cross-validation
method. The parameter used for SVM was radial kernel type, parameter C was zero,
and kernel gamma was 1, kernel cache was 200, convergence epsilon was 0.001, maximum
number of iterations was 100,000, Lpos was 1, and Lneg was 1. ANN with back propagation
was configured in three layers, number of nodes in the hidden layer was defined as 1 plus
total number of attributes, and classes divided by 2. The activation function was sigmoid,
learning rate was 0.3, momentum was 0.2.

Student’s t-test (STT) (software Kinetics, running under MATLAB R2010b) [25] was
utilized to evaluate and emphasize the differences between male and female spectra
recorded on molar apex. To obtain the difference spectrum, the mean spectrum of one
sample group (male) was subtracted from the mean spectrum of another group (female).
STT was used to analyze the difference spectrum in the manner that each wavenumber
was examined to determine if the difference in intensity between mean spectra of two
groups is statistically significant (p < 0.01). Moreover, STT was used to inspect a possible
statistically significant difference (p < 0.05) between intensity ratios of three vibrational
bands for two genders.

3. Results

Representative Raman spectra of male and female molar teeth, recorded on apex,
are presented in Figure 1. The inorganic part is approximately represented with vibra-
tional bands between 400 and 1100 cm−1 (mostly PO4 and CO3 vibrations) while bands
originating from the organic parts of the tooth can be found between 1100 and 3100 cm−1

(amide bands and C–H vibrations) [26,27]. It can be clearly seen from Figure 1 that male
and female teeth cannot be distinguished solely on visual characterization of the Raman
spectra. Furthermore, visual categorization of spectra with respect to the recording site
is also virtually impossible as the tooth apex and anatomical neck have extremely similar
spectral profiles (spectra not shown) for both male and female teeth.
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Figure 1. Representative Raman spectra of male and female molar teeth recorded from apex in the
3500–200 cm−1 range. The spectra are offset along the y-axis for clarity.

Later in this article, after application of statistical methods, it will be shown that there
exist small differences in inorganic/organic ratio of the several vibrational bands. These
properties reflect the fact that the two observed types of tooth tissue are built from the same
molecules but in different relative amounts. The major component of the inorganic part is
carbonated calcium-deficient hydroxyapatite, while most of the organic part consists of
collagen [28,29]. Assignation of the relevant vibrational bands is listed in Table 1.

Table 1. Assignment of major bands found in Raman spectra of teeth [27,30,31].

Assignment Wavenumber [cm−1]

ν(CH2) symmetric stretching 2979
ν(CH2) symmetric stretching 2940
ν(CH2) asymmetric stretching 2883

ν(C=O) Amide I ~1665
δ(CH2) bending mode

δ(N-H) Amide III
~1450
~1242

ν1 (CO3 type B) symmetric stretching 1069
ν1 (PO4) symmetric stretching 960
ν(CC); ν2(CO3) hydroxyproline 876
δ (CCH) aromatic; ν2(CC) proline ~853
ν4 (PO4) asymmetric bending 590
ν2 (PO4) symmetric bending ~431

In the next step, principal component analysis was applied to examine the possibility
of separating male and female teeth spectra on a PCA score-score graph. The results for
tooth apex and anatomical neck are presented in Figures 2 and 3, respectively, and the
PCA scores were calculated separately for tooth spectra of molars and premolars. There
is a strong separation between male and female spectra in Figure 2a,b and Figure 3a,b,
mostly due to the PC 1 scores. On the other side, when spectra of molars and premolars are
combined (Figures 2c and 3c), the ability of PCA to distinguish between female and male
spectra is significantly reduced, especially for spectra recorded on the apex. The presented
PCA results indicate that detecting gender using the Raman spectroscopy is possible only
with the comparison of spectra recorded at the same site on the tooth (apex, anatomical
neck) and using the same type of tooth (molar, premolar).
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Figure 2. PC1 versus PC2 score plot resulting from the decomposition of Raman data obtained on
tooth apex in the 3500–200 cm−1 range for: (a) premolars, (b) molars, (c) premolars and molars.

Following these conclusions, eight classification models were built via two different
algorithms, support vector machine (SVM) and artificial neural network (ANN), by using
calculated PC scores for two tooth types, molars and premolars, and two tooth sites,
apex and anatomical neck. First, data were divided into calibration and validation datasets
for each combination of tooth type and site, consisting of approximately 83% and 17% of the
total number of spectra, respectively. Additionally, as multiple spectra were recorded from
every tooth, data partitioning was done by placing all spectra belonging to one particular
tooth into the same dataset, either calibration or validation. Second, for both SVM and
ANN algorithms, calibration models were calculated using a different number of PCs from
1 to 20, for both recording sites. Third, all calibration models were cross-validated with
10-fold split validation where 70% of the calibration dataset was used for the model and
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30% for validation. Finally, the classification success rate, defined as the percentage of
correctly classified spectra, was obtained for the validation dataset.
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Figure 3. PC1 versus PC2 score plot resulting from the decomposition of Raman data obtained
on tooth anatomical neck in the 3500–200 cm−1 range for: (a) premolars, (b) molars, (c) premolars
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We first address the cross-validation classification results. The classification suc-
cess rate in the models with a different number of used PCs, for all calculated models,
is presented in Figure 4. The cross-validation confusion matrix of the most successful clas-
sification models, for spectra recorded on molar and premolar apex obtained by SVM and
ANN, respectively, is presented in Table 2. As can be seen in Figure 4, it is evident that most
of the computed models have validation accuracy higher than 90%. The exceptions are the
models calculated from spectra recorded from apex on premolars, which predominantly
have accuracy well below 75%.
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Figure 4. Cross-validation classification accuracy obtained by ANN and SVM in dependence on the
number of used PCs for all calculated models: Molar apex and molar anatomical neck; premolar
apex and premolar anatomical neck. Lines between symbols were added as a visual aid.

Table 2. Cross-validation confusion matrices for models with highest obtained success rate (apex models). AUC values
with their respective 95% confidence intervals and calculated DOR values are also presented.

Molars Premolars

ANN SVM ANN SVM

1 PC; Accuracy 94.77% 8 PCs; Accuracy 95.12% 20 PCs; Accuracy 80.89% 20 PCs; Accuracy 67.52%
AUC = 0.98 ± 0.02

DOR = 329
AUC = 0.99 ± 0.01

DOR = 413
AUC = 0.83 ± 0.07

DOR = 18
AUC = 0.80 ± 0.07

DOR = 4.39

Confusion Matrix: Confusion Matrix: Confusion Matrix: Confusion Matrix:
True Male Female True Male Female True Male Female True Male Female
Male 130 7 Male 133 9 Male 60 17 Male 51 29

Female 8 142 Female 5 140 Female 13 67 Female 22 55

Area Under the ROC Curve (AUC), dependent on the number of PCs used, is pre-
sented in Figure 5 and correlates well with the obtained cross-validation success rate.
Namely, AUC values are very high and placed in the 0.965–0.99 interval for all molar
models (both algorithms and recording sites) and premolar anatomical neck models, while
premolar apex models have much lower AUC values. Additionally, AUC values do not
fluctuate significantly with the number of principal components, except in the case of
premolar apex models. Finally, calculated diagnostic odds ratio (DOR) and AUC values
with their respective 95% confidence intervals presented, in Table 2, point to high diagnostic
accuracy in the case of apex molars for both ANN and SVM algorithms.

Finally, the ability of the obtained SVM and ANN models to determine gender utilizing
the validation dataset, consisting of 17% unused and “unknown” spectra (not used for the
model training), is presented. Results of the SVM and ANN classification are presented in
Figure 6 where the success rate dependent on the number of PCs used at different recording
sites is shown. The classification success rate for models trained with ANN is represented
using full symbols while those trained with SVM use empty symbols. Classification
accuracies for the apex on molars are represented with triangles, for the anatomical neck
on molars with squares, for the apex on premolars with circles, and for the anatomical
neck on premolars with inverted triangles. Based on classification results, molars appear
to have much greater potential in gender determination than premolars; the classification
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success rate between the two tooth types greatly differ (≈70–90% for molars compared
to ≈50–70% for premolars). Moreover, it is clearly visible in Figure 6 that, from all tested
models, the highest success rate is obtained for molar apex models trained with ANN. Their
success rate is dependent on the number of PCs used and several of these models have
accuracy higher than 90%. In addition, models trained with the same spectra but with the
SVM algorithm have slightly lower accuracy, which falls in the range of 82–87% depending
on the number of used PCs. On the other hand, molar anatomical neck models exhibit
lower classification potential with a success rate of 70–77%, being almost independent of
the used algorithm. Finally, premolar apex and premolar anatomical neck models have
success rates grouped around 60%.
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To identify the parts of Raman spectra that contributed the most to the separation
between male and female teeth, averaged spectra of teeth with spectral difference enhanced
with Student’s t-test (STT) result and PC loadings were compared. The analysis was re-
stricted to molar apex spectra because, according to hitherto presented findings, premolars
exhibit much lower gender classification potential. The results are shown in Figure 7 where
two spectra (black and red) on the bottom represent average spectra of male and female
molar apex, respectively. Moreover, the differential spectrum (male–female), in which red
stars mark specific parts of the spectrum where the Student’s t-test (p < 0.01) showed a
statistically significant difference between average male and female spectrum, is presented
just below the PC 1 loadings (molar apex), found at the top of Figure 7. The first principal
component was solely used because it exhibited the strongest difference between two
gender groups in the analysis of PCA scores. By comparing PC 1 loadings with differential
STT spectrum it is clear that the wavenumbers at which STT showed statistical significance
coincide with those where loadings have more pronounced values. Statistically significant
differences were discovered for the bands at 953 cm−1 (proline), 1070 cm−1 (CO3 stretch-
ing), 1450 cm−1 (CH2 bending), 1665 cm−1 (Amide I), and in the range of CH2 stretching
vibrations (between 2880 and 2980 cm−1).
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Statistical significance of these vibrational bands indicates a certain alteration in the
organic matrix so we calculated and compared intensity ratios (PO4 (960 cm−1)/amid I
(1665 cm−1) and PO4 (960 cm−1)/nCH2 (2940 cm−1)), which are the standard used for
determination of minerals to matrix ratio [32,33]. For each recorded Raman spectrum,
we read off intensities, calculated the aforementioned ratios, and then used a Student’s
t-test test. For spectra recorded on molar apex, STT showed that the difference between
average values for male and female teeth is statistically significant (p < 0.05). Thus, results in
Table 3 are an indication that the difference in male and female spectra, for spectra recorded
on the molar apex, might be connected with the changes in the mineral-to-matrix ratio.
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Table 3. Determination of the mineral-to-matrix ratio, as indicated by Raman intensity ratio of the
corresponding bands, for spectra recorded on molar apex.

PO4 (960 cm−1)/Amide I (1665 cm−1) PO4 (960 cm−1)/CH2 (2940 cm−1)

Male Female Male Female

7.255 7.436 2.23 2.15

4. Discussion

Our previous research on age determination using Raman tooth spectra [21] has
shown that the ability to correctly determine age is lower for female compared to male
teeth. This result provided the idea for the present study in which the multivariate models
for gender recognition based on Raman spectra were built and tested. In this work,
we focused solely on molars and premolars because these teeth are generally extracted
more often making it much easier to obtain a sufficient number of samples for analysis.
The Raman spectra were recorded on two distinct spots on the tooth, the apex and the
anatomical neck. We also recorded Raman spectra on enamel but these findings were not
included in this study; the enamel is predominantly inorganic, resulting in a relatively poor
spectrum [26] whose properties are also strongly influenced by one’s lifestyle habits [21].
Consequently, enamel spectra are less suitable for classification modeling and are thus not
a part of this study.

In order to access the potential of Raman spectroscopy in gender recognition, decom-
position and reduction of spectroscopy data were first carried out by means of PCA [34].
In Figures 2 and 3, general clustering of data was evident, providing a strong indication
that PC scores could successfully be used in determining gender, especially in the case
when different tooth types (molars and premolars) are modeled separately. On the other
hand, clustering of the spectra is less pronounced and significant overlap around the origin
is evident when PC models include both molars and premolars. It can be reasoned that
PC1 scores account for gender-related but also some other, gender nonrelated, differences
in the Raman spectra. Thus, in the case of different tooth types, spectral variances induced
by slight changes in chemical composition or structure could suppress gender-related
effects resulting in less successful clustering. An excitation laser penetrates deep inside
the teeth meaning that the resulting Raman spectra are a mixture of vibrational bands
present in both dentin and cementum. If the cementum layer is thicker, more information
will be collected from cementum compared to dentin. Cementum layer in the premolars
is generally thinner than in molars [35] thus we can expect that more information about
cementum is present in Raman spectra of molars. If we assume that gender information is
stored in cementum, spectra recorded on premolars will have that information screened
with dentin vibrational bands. This mixture of vibrational bands would definitely modify
structural and chemical information contained in Raman spectra making the classification
process much more uncertain.

Better classification results can be achieved when applying classification algorithms.
Therefore, apart from revealing spectra clustering, PCA was also used for data reduction
since Raman spectra possess too much data for practical classification. Hence, the first
20 PCs were used to calculate classification models. To reduce the possibility of overfitting
but also to test the classification accuracy of different classification algorithms, both SVM
and ANN were utilized. Additionally, as briefly mentioned in Materials and Methods,
our models for gender determination did not include the data about pathological processes
in order to simulate a realistic forensic scenario in which these variables are unknown.
Cross-validation accuracy and AUC showed that both algorithms give similar results for
both observed spots (apex and anatomical neck) on two tooth types; however, some dif-
ferences were observed between molars and premolars. Examples of cross-validation for
models generated using Raman spectra recorded on the apex are shown in Table 2 with
confusion matrices. It is conspicuous from Figures 4 and 5 that cross-validation accuracy
and AUC values for apex on premolars are much smaller compared to rest of the results.
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The decrease of classification accuracy for premolar apex could be connected with differ-
ences in structural and/or chemical composition of these teeth or by the simple fact that
the number of molars used in the experiment is much bigger than the number of premolars,
as typically, a higher number of spectra in the model makes the model more reliable. Due to
the relatively small number of premolar samples, the influence of possible outliers (the
spectra of a few problematic teeth, which have been exposed to some unusual life impacts)
on the calculated models might be rather strong. If the limited number of premolar samples
was the problem, it can be easily overcome by their increase in future investigations.

It is also important to note the high consistency of the results obtained using the
models calculated with both applied algorithms. This consistency excludes the possibility
of overfitting and confirms the quality of the used methodology. The dependence of AUC
on tooth type is also in accordance with the obtained results for classification accuracy.
Namely, higher AUC values are obtained for molars compared to premolars and ANN
again proves to be superior to SVM. AUC values for molars are close to 1 and 0.9 for ANN
and SVM, respectively, while for premolars, AUC values are lower for both ANN and SVM.

Because the number of molar specimens was greater than that of the premolars,
the classification accuracy of models with an unknown dataset was done only for molars,
but for both recording sites, apex and anatomical neck (Figure 6). The best results were
obtained using ANN and apex spectra where the percentage of accurately recognized
spectra was greater than 90%. Moreover, it is shown that the number of used PCs affects
the performance of the model. We attribute this behavior to different contributions of
individual components and also believe that optimizing the selection of PCs used for
modeling could further increase the success of gender recognition. Since Rapidminer
allows the optimization of features, which contribute most to the model, i.e., optimization
of principal components, we believe that this approach could enhance the classification
accuracy of our models. However, such optimization of parameters requires a lot of
computing time and power, so in this work, where only the possibility of gender recognition
using Raman spectra is presented, it was not applied. Models built using the SVM algorithm
and apex gave just slightly worse gender recognition accuracy compare to ANN, which
further confirmed the possibility of gender recognition by the Raman spectra of the teeth.

Finally, let us address the issue of different classification accuracy of the two distinct
tooth sites, the apex and anatomical neck. The classification accuracy for the molar anatom-
ical neck is lower than the molar apex, from 70 to 75%, and approximately the same for
both SVM and ANN algorithms. Apex and anatomical neck are covered with different
types of cementum, the apex with cellular and the anatomical neck with a thinner layer of
acellular cementum [36]. It is possible that gender recognition information is stored within
cellular cementum. That assumption is suggested from the analysis of recorded spectra,
Figure 7, where the difference in male and female spectra was related to the difference
in the mineral-to-matrix ratio (Table 3). Organic material is more present in cellular than
in acellular cementum [36] and its structure and composition are under the influence of
gender-dependent life events [37]. There are no literature data on the differences between
male and female cementum on the molecular level but it is reasonable to assume that com-
position of the organic matrix of cementum is slightly different in male and female teeth
and thus consistent with changes observed in the presented results (Table 3). Moreover,
the cementum covering the anatomical neck is exposed to various environmental factors
that affect its composition, which in turn reflects on Raman spectra. Over a lifetime, the gin-
gival attachment is often retracted from the anatomical neck, exposing it to environmental
conditions of oral cavity, including the effects of oral bacteria and mechanical abrasion.
This often leads to the damage of the thin cementum layer at the anatomical tooth neck and
the consequent exposure of the underlying dentin. The exposed dentin shows a defensive
response by hypermineralization, tubular occlusion, and a general increase in mineral
content. All of these processes can reflect on Raman spectra collected at the anatomical
neck, increasing their inter-individual variability [21].
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The differences between male and female cementum could also originate from varia-
tions in masticatory loading. Namely, higher masticatory loading can cause higher dental
cementum deposition [35] and could thus explain the differences between male and female
teeth. Furthermore, the difference in classification potential of molars and premolars could
also be rationalized with this assumption; molars are exposed to higher masticatory load-
ing causing higher dental cementum deposition and thus exhibiting higher classification
potential. However, this is only an assumption, as although cementum deposition can
be subjected to masticatory loading, which is generally higher in males [38], there is no
convincing evidence for a measurable gender-specific response of cementum-producing
cells to these forces [39].

5. Conclusions

In this work Raman spectra of teeth were recorded in order to extract information
about the owner’s gender. Raman spectra were analyzed with PCA, and classification
models were built with classification algorithms SVM and ANN. It was observed that the
accuracy of classification models depends both on the tooth type (molar and premolar) and
recording site (anatomical neck and apex) on the tooth. The best classification accuracy
(>90%) was achieved with spectra recorded from (apex on molars) while classification
models built with spectra recorded from premolars and from anatomical neck had lower
classification accuracies. The comparison of two used classification algorithms showed
that models built with ANN result in slightly better classification accuracies especially for
models built with spectra recorded on molar apex. Moreover, classification accuracy varies
with the number of used PCs suggesting that optimizing the selection of used principal
components might improve the final classification accuracy of the model.

Author Contributions: Conceptualization, O.G. and M.V.; methodology, O.G., M.Š., and M.P.; formal
analysis, O.G., M.K., and N.Š.; investigation, K.S., M.K., N.Š., and A.O.; resources, M.P. and M.V.;
data curation, A.O. and M.Š.; writing—original draft preparation, O.G.; writing—review and editing,
M.Š., K.S., M.B., S.D.B., and M.P.; supervision, M.Š., K.S., M.B., S.D.B., and M.P.; project administration,
O.G. and M.V.; funding acquisition, O.G. and M.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been partially supported by the project co-financed by the Croatian Govern-
ment and the European Union through the European Regional Development Fund—the Competitive-
ness and Cohesion Operational Program (KK.01.1.1.01.0001) and by the Croatian Science Foundation
(project IP-2020-02-9423).

Institutional Review Board Statement: Ethical approval for this study was obtained from the Ethics
Committee School of Dental Medicine University of Zagreb on 9 February 2017, 05-PA-15-2/2017.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Sample Availability: Samples of the compounds are not available from the authors.



Molecules 2021, 26, 3983 14 of 16

Appendix A

Table A1. Characteristics of teeth used in this study.

Specimen
No. Gender

Tooth Type
According to

ISO 3950
Notation

Donor Age
(Years)

Time between
Extraction and

Spectra Collection
(Years)

Reason for
Extraction

1 M 14 15 0.2 ortho

2 M 14 16 3.5 ortho

3 M 35 16 3.5 endo

4 M 47 22 0.2 endo

5 M 18 23 0.1 imp/ret

6 M 37 31 0.1 endo

7 M 37 32 0.2 endo

8 M 47 35 0.3 endo

9 M 27 44 0.1 endo

10 M 45 45 2.9 endo

11 M 14 47 4.2 endo

12 M 48 49 0.3 perio

13 M 25 52 3.9 perio

14 M 46 52 0.2 endo

15 M 47 54 0.3 perio

16 M 15 55 3.7 perio

17 M 27 55 4 perio

18 M 37 58 4.2 perio

19 M 17 58 4.2 endo

20 M 17 64 0.4 perio

21 M 44 64 0.1 perio

22 M 36 65 0.3 endo

23 M 17 67 0.2 endo

24 M 27 67 0.1 perio

25 M 45 68 4 perio

26 M 36 76 0.3 endo

27 F 24 11 4 ortho

28 F 36 17 0.5 endo

29 F 35 23 0.3 ortho

30 F 36 23 0.4 endo

31 F 47 23 0.5 endo

32 F 18 26 5.5 endo

33 F 28 29 0.4 imp/ret

34 F 28 31 0.3 endo

35 F 24 35 4.4 endo



Molecules 2021, 26, 3983 15 of 16

Table A1. Cont.

Specimen
No. Gender

Tooth Type
According to

ISO 3950
Notation

Donor Age
(Years)

Time between
Extraction and

Spectra Collection
(Years)

Reason for
Extraction

36 F 28 35 0.4 endo

37 F 27 38 0.6 perio

38 F 18 39 0.6 endo

39 F 45 39 3.8 perio

40 F 48 39 0.3 imp/ret

41 F 37 46 0.6 endo

42 F 36 48 0.1 endo

43 F 35 49 3.4 perio

44 F 44 49 3.7 perio

45 F 27 51 0.5 perio

46 F 25 53 3.9 perio

47 F 37 55 0.5 endo

48 F 27 56 0.5 perio

49 F 34 58 0.2 perio

50 F 37 58 0.6 perio

51 F 45 62 4 perio

52 F 17 64 0.5 endo

53 F 45 65 4.1 perio

54 F 26 66 0.6 perio

55 F 37 73 0.6 endo
Reasons for extraction: Ortho = orthodontic extraction, endo = failed endodontic treatment or inability to perform
endodontic treatment, perio = extraction due to advanced periodontitis, imp/ret = impacted or retained tooth.
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