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Abstract: Laser-powder bed fusion (LPBF) is one of the preferred techniques for producing Co-
Cr metal structures for dental prosthodontic appliances. However, there is generally insufficient
information about material properties related to the production process and parameters. This study
was conducted on samples produced from three different commercially available Co-Cr dental alloys
produced on three different LPBF machines. Identically prepared samples were used for tensile, three-
point bending, and toughness tests. Light microscopy (LM), scanning electron microscopy (SEM),
and electron backscatter diffraction (EBSD) analyses of microstructure were performed after testing.
Differences were observed in microstructures, which reflected statistically significant differences in
mechanical properties (one-way analysis of variance (ANOVA) and Scheffé post hoc test (α = 0.05)).
The material produced on the 3D Systems DMP Dental 100 had 24 times greater elongation ε than the
material produced on the Sysma MySint 100 device and the EOS M100 machine. On the other hand,
the material produced on the EOS M100 had significantly higher hardness (HV0.2) than the other
two produced materials. However, the microstructure of the Sysma specimens with its morphology
deviates considerably from the studied group. LPBF-prepared Co-Cr dental alloys demonstrated
significant differences in their microstructures and, consequently, mechanical properties.

Keywords: Co-Cr dental alloys; LPBF; microstructure; mechanical properties; SEM; EBSD

1. Introduction

Additively manufactured (AM) Co-Cr-based alloys are used for metallic structures of
dental appliances and generally for biomedical purposes. Due to their excellent mechanical
properties with a combination of high wear, corrosion resistance, and biocompatibility,
Co-Cr alloys are one of the standard materials in biomedical applications. In addition,
Co-Cr alloys for dental appliances demonstrate optimal manufacturing, biomedical, and
economic characteristics [1,2].

Laser-powder bed fusion (LPBF) machines for Co-Cr dental alloys are widely available
on the market. All manufacturers declare that products produced on their devices meet
all professional standards (primarily EN ISO 22674:2016) and are comparable or better
to products made by conventional production processing (casting) [3]. However, just a
few studies are available that investigate the impact of the production parameters and
machine set-up for AM production on the quality and mechanical characteristics of dental
metal-based constructions for fixed partial dentures (FPDs) [4,5].

Co-Cr dental alloys are produced from LPBF techniques such as selective laser melting
(SLM), which allow us to overcome the imperfections of traditional manufacturing pro-
cesses (casting and milling). With SLM, layer by layer of metal powder is melted into a 3D
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object with a directed laser beam. The main advantage of the SLM manufacturing process
over traditional casting is the possibility of producing complex personalized objects much
faster with similar or better properties compared to conventional manufacturing [5–7].
Digital technologies have been in use for more than three decades in dental medicine,
with the first CEREC machine utilizing CAD/CAM principles having been on the market
since 1986. However, only in the last decade, the exponential development of digital
technologies, specifically AM and intraoral 3D scanning devices, has significantly increased
their impact and use in everyday clinical practice [6–9]. This increase followed techno-
logical advances in intraoral scanners’ precision, handling, ease of use, compatibility, and
interconnectivity with commonly used dental design software such as ExoCAD (ExoCAD
Int., San Jose, CA, USA), Trios 3Shape (Trios, Denmark), and InLine (Dentsply-Sirona Co.,
Charlotte, NC, USA). Clinical implementation of new technologies calls for modifications
and optimizations of clinical and technical protocols [10,11]. Within technical protocols are
also those dealing with the production of dental prosthodontic appliances regarding input
material quality and characteristics, input material handling protocols, production specifics,
and output quality control with final standardized products regarding mechanical and
biochemical properties, biopotentials, cytological dynamics, and forensic aspects [12,13].
However, those technical production protocols are still undefined and are by no means
standardized, resulting in a vast array of products with undefined characteristics. Such a
situation on the dental market leaves both dentists and patients unaware of the material
quality or the quality of the prosthodontic appliances placed in function, which can have
a significant impact on clinical performance and durability as well as potential warranty
issues [14–19].

Dental and generally biomedical Co-Cr alloys consist of 51.8–65.8 wt % of Co; 23.7–
30.0 wt % of Cr; 4.6–5.6 wt % of Mo; 4.9–5.9 wt % W; and <1 wt % of Mn, Si, and Fe [12].
The mechanical properties of Co-Cr dental alloys primarily depend on the chemical com-
position, microstructure, and manufacturing process. Pure Co exists in two allotropic
modifications: at temperatures below 417 ◦C in the HCP structure, while an FCC structure
is stable above this temperature. The microstructure of dental alloys consists of the γ phase
(FCC lattice) with carbides and the ε phase (HCP lattice). The γ phase affects mechanical
properties (ductility) while the ε phase affects tribo-corrosion properties (wear and cor-
rosion resistance) [1,20–24]. Properties of Co-Cr dental alloys greatly depend on the γ–ε
ratio (FCC–HCP ratio) and other inclusions, predominantly carbides, in the microstructure
(type, distribution, and quantity of the carbides) [5,25–27].

High heat and cooling rates are characteristics of the SLM process. High heat and
cooling rates lead to phase transformations and result in microstructural changes in the
γ–ε ratio, and, consequently, in the material properties (mechanical, wear, and corrosion)
of the final products [15,20]. SLM main process parameters such as laser power, scanning
speed, layer thickness, hatching distance, the temperature of the building platform, and
scanning strategy lead to differences in the microstructure of the produced parts and modi-
fications of the mechanical properties [3,14,26]. Recent studies reported that Co-Cr dental
alloys produced by the SLM process have a higher corrosion resistance [26] and higher
yield and tensile strengths compared to the cast alloys. In the SLM Co-Cr dental alloys,
mechanical anisotropy was detected due to changes in the obtained microstructure [16].
The SLM-produced Co-Cr alloys met the properties according to the ISO 22674:2016 (type
5 criteria) such as UTS, yield strength, and elongation and were higher than manufactured
by casting [1–3,27–31]. Therefore, optimizing the main SLM production parameters is
essential for producing Co-Cr dental alloys with the necessary characteristics for dental
appliances [3,26].

The main objective of this study is to compare the mechanical properties of additively
produced commercial Co-Cr alloys for dental appliances on three different machines
with three types of metal powders where manufacturers guarantee compliance with the
requirements according to EN ISO 22674:2016. Three types of samples were additively
manufactured (LPBF) for testing mechanical properties and analysis microstructures using
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light microscopy (LM), scanning electron microscopy (SEM), electronic backscattering
techniques (EBSD), and chemical composition analysis to try to correlate these obtained
mechanical properties with the microstructure. Based on all these results, we propose the
standardization of LPBF procedures for dental use.

2. Materials and Methods

Three sets of three specimens were produced using (a) Sysma MySint100 (BEGO
Medical GmbH, Bremen, Germany), (b) EOS M100 (EOS GmbH, Krailling, Germany),
and (c) 3D Systems DMP Dental 100 (3D Systems, Rock Hill, SC, USA). All specimens
were produced and heat-treated for stabilization according to the producer-recommended
parameters. The shape and dimensions of the printed specimens are shown in Figure 1.
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We conducted tests for static tensile strength (tensile strength Rm, MPa, and elongation
ε, %; Beta 50-5, Messphysik, Austria), three-point bending (flexural strength RfM, MPa;
Inspekt Table Blue 20 kN, Hegewald & Peschke Meß- und Prüftechnik GmbH, Germany),
Charpy impact toughness test (impact toughness, CVN; Charpy impact machine, Karl
Frank GmbH, Weinheim-Birkenau, Germany), and microhardness (HV0.2; Wilson–Wolpert
Tukon 2100B; Instron, Norwood, MA, USA). The microstructural characterization of the
specimens was performed for impact toughness in two vertical cross-sections. For the
microstructural analysis, specimens were prepared with the standard metallographic pro-
cedure followed by electrochemical etching with 10 vol % of oxalic acid at 12 V for three
minutes. The microstructure was analyzed using the light microscope OLYMPUS GX51F-5
with the attached Olympus DP-25 CCD camera. A field-emission scanning electron micro-
scope (FE-SEM), ZEISS CrossBeam 550 FIBSEM (Oberkochen, Germany), equipped with
an EDAX Hikari Super EBSD camera, was used for the detailed microstructural charac-
terization with EDAX TEAM software. Secondary electron imaging (SEI) and electron
backscatter diffraction (EBSD) was carried out on FE-SEM. SE images and EDS analyses
were performed using 15 kV accelerating voltage and 2.0–5.0 nA probe current, while
EBSD measurements were carried out on 70◦ tilted samples and 7.0 nA probe current
for phase composition. The EBSD characterization was performed on randomly selected
field of appx. 500 × 400 µm. Chemical composition was performed on ICP OES, Agilent
5800 (Santa Clara, CA, USA), and carbon content on ELTRA CS 800 (Eltra GmbH, Haan,
Germany).

The obtained values of mechanical properties were analyzed using SPSS Version
20 (Illinois, USA). The values between different groups were evaluated with a one-way
analysis of variance (ANOVA) and Scheffé post hoc test (α = 0.05).
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Table 1 shows the type and the composition of Co-Cr powder used for each device, as
specified by the manufacturer.

Table 1. SLM machine, Co-Cr powder type, and chemical composition (wt %) according to manufac-
turers.

Machine Co-Cr Powder Type Powder Chemical Composition
(wt %)

Sysma MySint100 Wirobond C+ Co (63.9), Cr (24.7), W (5.4), Mo
(5.0), Si (<1.0)

EOS M100 Cobalt Chrome SP2 Co (63.8), Cr (24.7), Mo (5.1), W
(5.4), Si (1), other (<1.0)

3D Systems DMP Dental
100 Laser Form CoCr (B)

Co (bal.), Cr (28.0–30.0), Mo
(5.0–6.0), Si (0.0–1.0), Mn (0.0–1.0),

Fe (0.0–0.5), C (0.0–0.02)

3. Results

The results of the tested mechanical properties of all specimens are presented in
Table 2. The values in the table represent the mean value from three measurements (n = 3
per group) and their standard deviations. The mean values of HV0.2 were measurement
(n = 10) in two mutually perpendicular directions of Co-Cr specimens.

Table 2. Mean values and standard deviations of conducted mechanical properties.

Type of
Mechanical Test Mechanical Property Sysma MySint 100 EOS M100 3D Systems DMP

Dental 100

Static tensile test

Elongation ε/% 0.33 ± 0.1 a 4.90 ± 1.1 b 8.1 ± 1.5 c

Tensile Strength Rm/MPa 1112 ± 123.7 a 1370 ± 13.6 b 1016 ± 61.7 a

Yield Strength Rp0.2/MPa 834 ± 62 a 1061 ± 21 b 822 ± 43 a

3-point bending
test RfM/MPa 2059 ± 251.9 a 2527 ± 92.7 b 2548 ± 54.3 b

(Impact)
Toughness CVN/J 0.26 ± 0.02 a 0.27 ± 0.03 a 0.61 ± 0.01 b

Microhardness HV0.2
Cross-section 568 ± 27 a 770 ± 80 b 513 ± 12 a

Longitudinal-section 554 ± 8 a 719 ± 59 b 587 ± 44 a

Different superscript letter in a row indicates statistically significant difference (p < 0.05).

The obtained chemical composition of specimens is given in Table 3.

Table 3. Chemical composition of specimens (wt %).

Machine Chemical Composition (wt %)

Sysma MySint100 Co (bal.), Cr (24.6 ± 0.2), W (5.7 ± 0.08), Mo (5.3 ± 0.08), Fe
(0.19 ± 0.01), Mn (0.05 ± 0.002), C (0.008 ± 0.001)

EOS M100 Co (bal.), Cr (24.8 ± 0.2), W (5.6 ± 0.09), Mo (5.3 ± 0.08), Fe
(0.05 ± 0.003), Mn (< 0.01), C (0.005 ± 0.001)

3D Systems DMP Dental 100 Co (bal.), Cr (29.1 ± 0.2), W (0.19 ± 0.02), Mo (5.3 ± 0.2), Fe
(0.19 ± 0.01), Mn (0.71 ± 0.02), C (0.015 ± 0.002)

The chemical composition from Table 3 matches the declared chemical composition of
the manufacturers. For example, the chemical composition of Co-Cr powders Wirobond
C+ (Sysma MySint100) and Cobalt Chrome SP2 (EOS M100) is similar. In contrast, Co-
Cr powder Laser Form CoCr (B) (3D System DMP Dental 100) does not have a similar
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amount of W (0.19 wt %). Crucial is C content due to its effect on the mechanical properties
(carbides are formed) [5].

The addition of molybdenum (Mo) and wolfram (W) leads to solid solution strengthen-
ing and the formation of MoC- and WC-type carbides and Co3W and Co3Mo intermetallic
phase (HCP–ε phase). The carbon content (even in a small range) greatly influences me-
chanical properties (the volume of γ phase increased—higher elongation ε). Co-Cr dental
alloys consist mainly of γ phase and carbides of the (Cr, Fe, W, Mo)23C6 (higher Rp0.2, Rm,
and hardness) [5,32,33]. The obtained mechanical properties depend on the γ–ε (FCC–HCP)
ratio [26,31].

Microstructure Analysis

The microstructure of the specimens was analyzed using a light microscope. Char-
acteristic microstructures under the same magnification are presented in Figure 2. The
microstructure of the specimens built on the Sysma MySint100 device (Figure 2a) [12]
indicates morphology of the microstructure, which can be the result of low values of Laser
Energy Density (LED) (J mm−3) used during the SLM process according to [16]. Low LED
values can also lead to large internal porosity and a lack of fusion between the layers [12].
The observed porosity is presented in Figure 3. Figure 2b,c and Figure 3b,c present continu-
ous microstructure of regular morphology, which is characteristic for medium and high
values of LED [16].
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The SEM analysis shows mostly uniformly annealed microstructure of the specimens
with the characteristic morphology for additive manufacturing technologies. Studies of
the specimens also show some local porosity (yellow circles in Figure 3). Regardless of the
selected areas, no visible differences were observed.

The EBSD analyses on prepared samples show the differences in the microstructure.
EBSD inversed pole figures in the Z-direction (IPF Z) micrographs and phase maps with
HCP and FCC phase amounts are presented in Figure 4. The microstructure of the observed
specimens presents typical AM-prepared material with melt pool shapes and cellular
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structures in different directions. AM processes show that an equiaxed grain shape is
formed at a high solidification rate and a low-temperature gradient due to powder thermal
conductivity. On the other hand, a planar grain structure is formed with a high-temperature
gradient and low solidification, and in between, a columnar grain shape is created [34].
The main differences of the studied Co-Cr samples are in the amount of HCP phase in the
prepared sample: 15% in Sysma, 6.1% in EOS, and 1.3% in 3D Systems.
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4. Discussion

The present study results show significant differences in the values of the mechanical
properties of the specimens, depending on the used device shown in Table 2 (p values < 0.05
were considered statistically significant).

The most significant deviations are present in elongation ε, where specimens made on
the 3D Systems DMP Dental 100 have 24 times greater elongation ε (0.33 ± 0.1 < 8.1 ± 1.5,
p < 0.05) than specimens made on the Sysma MySint100 device.

The tensile strength Rm of the specimens produced on EOS M100 has a statistically
higher value (p < 0.05) from other devices. In contrast, the lowest bending strength is
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measured on the Sysma MySint100 specimens (p < 0.05). Specimens from this device also
have the highest standard deviations of Rm and RfM values.

No differences in microhardness (HV0.2) were measured between the cross and longi-
tudinal sections of the specimens made on the same machines. However, the microhardness
of specimens made on the EOS M100 machine is significantly higher than the two other
groups of specimens (p < 0.05).

Analysis of the microstructures showed that the microstructure of the Sysma MySint100
specimens differ slightly from the other two groups of specimens in its morphology. The
microstructure of the other two specimens has a fine-grain microstructure with clearly
visible boundaries between the grains. Thus, they have typical morphology for the material
obtained by laser melting with melt pools overlapping [23]. The carbide precipitates were
not found along the grain boundaries either in the grains.

Based on the literature [3,30,31,35–37], the mean values and standard deviations of
the mechanical properties of milled (CNC), cast, and SLM-produced Co-Cr alloys, are
presented in Table 4, along with EN ISO 22674 criteria.

Table 4. Mean values and standard deviations of mechanical properties of milled (CNC), cast, and SLM-produced Co-Cr
alloys from the literature, and EN ISO 22674:2016.

Property Milled (CNC) Cast SLM EN ISO 22674:2016

Tensile Strength
Rm/MPa

638 ± 25 [31]
1069 ± 10 [3]

450 [30]
520 ± 30 [31]
783 ± 32 [3]

1072 ± 18 [31]
1158 ± 10 [3]

1200 ± 24 [36]
-

Yield Strength
Rp0.2/MPa

495 ± 20 [31]
672 ± 4 [3]

581 ± 16 [3]
655 [37]

658 ± 44 [31]

783 ± 15 [3]
790 ± 11 [31]
870 ± 26 [35]

≥500

Elongation ε/% 10 ± 1 [3]
11.1 ± 1 [31]

8 [37]
8 ± 0.4 [31]
12 ± 2 [3]

8.7 ± 1.06 [36]
12.7 ± 1.9 [31]

13 ± 1 [3]
≥2

3-point bending test
RfM/MPa - 1136 ± 1 [30] 2501 ± 9.7 [30] -

Hardness HV10
264 ± 11 [35]
325 ± 18 [31]

353 ± 6 [3]

270 ± 16 [35]
303 ± 15 [3]

324 ± 27 [31]

399 ± 24 [3]
466 ± 13 [35]
475 ± 10 [31]

-

Comparing the measured values of mechanical properties in Table 2 with the mean
values from the literature in Table 4, depending on the production technology, it can be
concluded that the SLM technology can produce Co-Cr dental alloys that meet the EN ISO
22674:2016 type 5 criteria (Rp0.2 ≥ 500 MPa and ε ≥ 2%). They also have better mechanical
properties than Co-Cr alloys produced by conventional production processes (milled (CNC)
and cast). However, the mean value of elongation ε (0.33 ± 0.1) on Sysma Mysint100 does
not meet EN ISO 22674:2016 standards and is not comparable with mean values obtained
with conventional production procedures (Table 4). On the other hand, other values of all
mechanical properties of the materials produced on three different machines from Table 2
are comparable to the obtained mechanical properties in [3,30,31,35–37] (Table 4). Therefore,
comparing the mechanical properties of specimens prepared by different machines, the 3D
Systems DMP Dental 100 can be compared to the values presented in Table 4. At the same
time, EOS M100 has an elongation ε about 50% lower (4.90 ± 1.1 < 8 ± 1.5, p < 0.05) but
meets EN ISO 22674:2016. In contrast, specimens obtained with Sysma MySint100 did not
meet the elongation value ε (0.33 ± 0.1) according to EN ISO 22674:2016.

According to the Co-Cr binary phase diagram, chromium stabilizes the HCP cobalt
in conventionally produced material. Nevertheless, in our study, the phase composition
of Sysma MySint 100 and EOS M100 produced materials with similar Cr content displays
the different amounts of HCP structure. On the other hand, the 3D Systems DMP Dental
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100 with the highest amount of Cr contain almost no HCP structure. This phenomenon
can be explained by non-equilibrium (rapid) solidification in AM processes. Therefore,
it is necessary to perform further microstructural analyzes and mechanical tests of AM-
produced samples to determine the mechanisms of microstructural formation.

5. Conclusions

From the obtained results, the following conclusions can be drawn:

• The mechanical properties of Co-Cr specimens made on Sysma MySint 100, EOS M100,
and 3D Systems DMP Dental 100 are comparable or even better than the mechanical
properties of Co-Cr specimens produced by the conventional routes, which are casting
and milling (CNC) technologies (except for elongation ε, on Sysma MySint 100 and
EOS M100).

• The results of the current study demonstrate that the tested specimens meet at least
the type 5 criteria in mechanical properties according to the EN ISO 22674:2016 (Rp0.2
≥ 500 MPa and ε ≥ 2%), except the Sysma Mysint100 specimens for elongation ε.

• The highest elongation ε (8.1 ± 1.5%), flexural strength RfM (2548 ± 54.3 MPa), and
toughness CVN (0.61 ± 0.01 J) have specimens produced by 3D Systems DMP Dental
100 (highest content of Cr (29.1 ± 0.2 wt %) and C (0.015 ± 0.002 wt %) without higher
content of W (0.19 ± 0.01 wt %) leads to formatting more Cr23C6 carbides, which
determine the higher proportion of γ phase (FCC) and better mechanical properties).

• The highest tensile strength Rm (1370 ± 13.6 MPa), yield strength Rp0.2 (1370 ± 13.6
Mpa), and the microhardness HV0.2 in cross-section (770 ± 80) and longitudinal-
section (719 ± 59) have the specimens made on the EOS M100 (the higher HCP (ε
phase) amount contributes to higher hardness and mechanical properties such as Rm
and Rp0.2 but decreases elongation ε–W (5.6 ± 0.09 wt %) and Mo (5.3 ± 0.08 wt %),
leading to formatting Co3W and Co3Mo intermetallic HCP phase).

• Microstructural analyses show the highest HCP amount of 15% (ε phase) in Sysma
MySint100 specimens (higher content of C (0.008 ± 0.001 wt %) leads to formatting
Cr7C3 (ε phase), MoC, and WC carbides, which leads to decreasing mechanical prop-
erties (especially elongation ε), which causes lower mechanical properties compared
to the other two AM-produced materials).

From the obtained results’ deviation among commercial Co-Cr dental alloys produc-
ers, the standardization of process parameters and feedstock powders for Co-Cr dental
prosthodontic appliances is essential.
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