Regenerativna endodoncija u dječjoj stomatologiji

Narančić, Martin

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Dental Medicine / Sveučilište u Zagrebu, Stomatološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:127:791965

Rights / Prava: Attribution-NonCommercial-NoDerivs 3.0 Unported

Download date / Datum preuzimanja: 2020-10-15

Repository / Repozitorij:

University of Zagreb School of Dental Medicine Repository
SVEUČILIŠTE U ZAGREBU

STOMATOLOŠKI FAKULTET

Martin Narančić

REGENERATIVNA ENDODONCIJA U DJEČJOJ STOMATOLOGIJI

DIPLOMSKI RAD

Zagreb, srpanj 2015.
Rad je izraden na Zavodu za dječju i preventivnu stomatologiju

Stomatološkoga fakulteta u Zagrebu

Mentor: dr. sc. Tomislav Škrinjarić, dr. med. dent., specijalist dječje i preventivne stomatologije, Stomatološki fakultet Sveučilišta u Zagrebu

Lektor teksa na hrvatskom jeziku: Danijela Petaros Globan, prof. hrvatskoga jezika i književnosti, prof. fonetike i dipl. bibliotekarica

Mobitel: 098 624 425

E-mail adresa: dpetaros@gmail.com

Lektor teksta na engleskom jeziku: Martina Matijašević, profesorica hrvatskog i engleskog jezika.

Mobitel: 098 161 0336

e-mail adresa: martina.matijasevic1@gmail.com

Rad sadrži:

- 46 stranica
- 16 slika
- 1 CD
Zahvaljujem svom mentoru dr. sc. Tomislavu Škrinjariću na pomoći, strpljenju i korisnim savjetima tijekom izrade ovog diplomskoga rada.

Posebno zahvaljujem obitelji, a osobito svojoj mami, koja mi je tijekom studiranja pružila bezuvjetnu ljubav, razumijevanje i potporu.

Iskreno zahvaljujem svim svojim prijateljima, koji su mi na bilo koji način pomogli i bili podrška za vrijeme моjega studija.

„…znatiželjnom i zaigranom dječaku i njegovoј pčeli…“
SADRŽAJ

1. UVOD.. 1
2. SVRHA RADA ... 3
3. APEKSNI ODONTOGENI KOMPLEKS.. 4
 3.1. Hertwigova epitelna ovojnica.. 4
 3.2. Zubna papila.. 4
 3.3. Zubni folikul.. 5
4. ANESTEZIJA ... 6
5. KOFERDAM ... 6
6. INSTRUMENTACIJA .. 6
7. IRIGACIJA I DEZINFEKCIJA .. 7
 7.1. Vodikov peroksid (H₂O₂).. 8
 7.2. Klorheksidin (CHX) ... 8
 7.3. Natrijev hipoklorit (NaOCl) .. 8
 7.4. Jod .. 9
 7.5. Dinatrij-etilendiamintetraoctena kiselina (EDTA) 9
 7.6. Dezinfekcija aktivirana svjetlom (DAŠ) ... 10
8. MEĐUPOSJETNI LIJEKOVI ... 12
 8.1. Kalcijev hidroksid (Ca(OH)₂).. 12
 8.2. Antibiotici .. 12
 8.2.1. Trostruka antibiotska pasta (TAP).. 13
9. EKSTRACEELULARNI MATRIKS .. 16
 9.1. Krv .. 16
 9.2. Plazma bogata trombocitima (PRP) .. 17
 9.3. Fibrin bogat trombocitima (PRF) ... 18
 9.4. Nekrotična sterilna pulpa ... 18
10. MATERIJALI ZA DIREKTNO PRIKREVANJE MATRIKSA.............................. 20
 10.1. Mineral trioksid agregat (MTA) ... 20
 10.2. Biodentine ... 21
11. POSTENDODONTSKA OPSKRBA ZUBA ... 22
12. EVALUACIJA USPJEHA ... 22
13. KLINIČKI POSTUPAK ... 23
 13.1. Prva posjeta ... 23
 13.2. Druga posjeta ... 27
14. RASPRAVA ... 32
15. ZAKLJUČAK .. 40
16. SAŽETAK ... 41
17. SUMMARY ... 42
18. LITERATURA .. 43
19. ŽIVOTOPIS ... 45
POPIS SKRAĆENICA I AKRONIMA

<table>
<thead>
<tr>
<th>Abk.</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOCl</td>
<td>natrijev hipoklorit</td>
</tr>
<tr>
<td>CHX</td>
<td>klorheksidin</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>vodikov peroksid</td>
</tr>
<tr>
<td>EDTA</td>
<td>etilendiamintetraoctena kiselina</td>
</tr>
<tr>
<td>DAS</td>
<td>dezinfekcija aktivirana svjetlom</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>kalcijev hidroksid</td>
</tr>
<tr>
<td>TAP</td>
<td>trostruka antibiotska pasta</td>
</tr>
<tr>
<td>DNK</td>
<td>deoksiribonukleinska kiselina</td>
</tr>
<tr>
<td>MTA</td>
<td>mineral trioksid agregat</td>
</tr>
<tr>
<td>CCS</td>
<td>caklinsko-cementno spojište</td>
</tr>
<tr>
<td>PRP</td>
<td>plazma bogata trombocitima</td>
</tr>
<tr>
<td>FRP</td>
<td>fibrin bogat trombocitima</td>
</tr>
<tr>
<td>LDF</td>
<td>laser doppler flowmetrija</td>
</tr>
<tr>
<td>SIC</td>
<td>staklenoionomerni cement</td>
</tr>
<tr>
<td>EPT</td>
<td>električni test pulpe</td>
</tr>
</tbody>
</table>
RTG: rendgenska snimka
PCA: para-kloranilin
PPP: plazma siromašna trombocitima
1. UVOD

Najčešći uzrok nekroze pulpe kod nerazvijenih trajnih zubi je karijes ili trauma (1). Nekroza pulpe kod mladih trajnih zubi dovodi do mnogih komplikacija. Prerani gubitak vitaliteta sprečava razvoj korijena ostavljajući tanke zidove korijenskog kanala i široki apeksni otvor. Convencionalne tehnike liječenja trajnih zubi s razvijenim korijenskim kanalom se ne mogu primijeniti kod liječenja nerazvijenih trajnih zubi radi njihove kompleksne anatomske građe. Instrumentacija i punjenje korijenskog kanala kod nerazvijenih trajnih zubi je teška i nemoguća korištenjem convencionalnih endodontskih tehnika. Nadalje, slabi i tanki zidovi korijenskog kanala su skloni frakturiranju (2).

Banchs and Trope su 2004. godine opisali novu tehniku liječenja na primjeru nekrotičnog nerazvijenog mandibularnog drugog premolara sa širokim apeksnim otvorom i nazvali je „revaskularizacija”. Autori su koristili NaOCl i CHX kao otopine za irrigaciju i kombinaciju tri antibiotika (ciprofloksacin, metronidazol i minociklin) za dezinfekciju korijenskog kanala, koju je opisao Hoshino i suradnici. Nakon dvije godine, otkriveno je da su zidovi korijenskog kanala postali deblji i čvršći i da se apeks normalno zatvorio. Time su dokazali da je revaskularizacijom
moguće liječiti nerazvijene trajne zube sa širokim apeksnim otvorom i velikim periapikalnim procesima, tako da se replicira identična situacija revaskularizacije, koja je moguća kod avulziranog zuba. Nakon njih su mnogi znanstvenici pokušali primijeniti ovaj pristup liječenja i većina ih je primijenjena na sjekutićima i pretkutnjacima djece u rasponu od 8 do 14 godina (3).
2. **SVRHA RADA**

Svrha rada je objasniti tehniku liječenja mladih, trajnih zubi s nezavršenim rastom i razvojem korijena postupkom revaskularizacije pulpe.
3. **APEKSNI ODONTOGENI KOMPLEKS**

3.1. **Hertwigova epitelna ovojnica**

3.2. **Zubna papila**

Stanice dentalne papile se diferenciraju u dodiru s Hertwigovom ovojnicom u odontoblaste koji odlažu dentin.
3.3. Zubni folikul

Mezenhimalne stanice zubnog folikula se kreću između epitelnih ostataka Hertwigove ovojnica do površine korijena. Na tom mjestu se diferenciraju u cementoblaste i kreću odlagati cementoid na površinu intermedijarnog cementa. Stanice dentalnog folikula također se diferenciraju u osteoblaste, koji stvaraju alveolarnu kost te u fibroblaste, koji su zaduženi za razvoj parodontnog ligamenta (4).

Slika 1. Hertwigova epitelna ovojnica

Preuzeto: (5)
4. ANESTEZIJA

Postupak revaskularizacije pulpe u jednoj od svojih faza liječanja zahtjeva provokaciju krvarenja. Ono treba biti dostatno da bi se formirao zadovoljavajući krvni ugrušak. Ponekad može biti izazovno i upravo radi toga se preporuča uporaba lokalnog anestetika bez vazokonstriktora (epinefrina). To se pogotovo odnosi na drugi posjet pacijenta pri kojem se stimulira apikalno krvarenje (6).

5. KOFERDAM

Liječenje zuba tehnikom revaskularizacije pulpe je izuzetno osjetljiv postupak. Upravo iz toga razloga izolacija zuba i osiguravanje suhog radnog polja koferdamom je neizbježna. Preporuča se također da se prije početka trepanacije, kruna zuba dezinficira sa 10% povidon-jodinom (Betadine) kako bi se maksimalno reducirala prisutnost bakterija i time izbjeglo kompromitiranje zahvata.

6. INSTRUMENTACIJA

Većina autora smatra da bi se trebala izbjeći instrumentacija. Korištenje endodontskih instrumenta oslabljuje ionako tanke stijenke korijenskog kanala i oštećuje matične stanice prisutne u apeksnom području. Dvije vrste stanica su potrebne kako bi se postigao normalan razvoj korijena: odontoblasti i epitelne stanice.
Hertwigove ovojnice. Obje vrste stanica su obilno prisutne u apeksnom području nezrelih trajnih zubi i mogu preživjeti upalu. U tom slučaju stanice se diferenciraju u sekundarne odontoblaste koji će početi stvarati dentin na stijenkama korijenskog kanala i započeti rast i razvoju korijena.

7. **IRIGACIJA I DEZINFEKCIJA**

Irigansi igraju važnu ulogu u primarnoj dezinfekciji. Trebali bi imati maksimalan baktericidni i bakteriostatski učinak sa minimalnim citotoksičnim učinkom na matične stanice i fibroblaste te omogućiti njihovo preživljenje i očuvati sposobnost proliferacije.

Infekcija pulpe se širi prema apeksnom području i stvara nepovoljne kisele uvjete za ikakav oblik tkivne regeneracije. Bakterije invadirajući u kanal stvaraju biofilmove koji se adheriraju na zidove korijenskog kanala, ulaze u dentinske tubuluse i zakutke apeksnog područja. U ovim područjima bakterijski biofilmovi su prilično nedostupni dezinfekcijskim postupcima, a bakterije skrivene u dubini biofilma otporne na djelovanje antibiotika i irigansa. Kako bi se osigurala optimalna dezinfekcija korijenskog kanala za tkivnu regeneraciju potrebno je razbiti i eliminirati biofilmove.

Aktiviranje irigansa u korijenskom kanalu je jedini način da se mehanički dezintegrira bakterijski biofilm u područjima nedostupnim instrumentaciji. Upravo to opravdava korištenje zvučnih endodontskih instrumenata. Oni stvaraju proces kavitacije, koja povisuje temperaturu irigansa i usmjerava ga u sve zakutke endodontskog prostora. Time se pojačava djelovanje irigansa i dezintegrira
bakterijski biofilm. Prilikom aktivacije je važno izbjeći direktan dodir zvučnog instrumenta s dentinskim zidom.

7.1. Vodikov peroksid (H₂O₂)

Otapajuće djelovanje vodikovog peroksida gotovo ne postoji, ali zato posjeduje hemostatički učinak. Vodikov peroksid je antiseptik, koji djeluje otpuštanjem radikala kisika. Nažalost, njegovo djelovanje je kratko i brzo neutralizirano organskim ostacima. Povrh toga, zahtijeva ispiranje, kako bi se smanjila bol i mogućnost nastanka poslijeoperativnog emfizema.

7.2. Klorheksidin (CHX)

Klorheksidin kao 2% gel je privremeni antiseptik izbora. Dobro i prolongirano djeluje na kandidu i gram⁺ bakterije. Njegove pozitivno nabijene molekule se adsorbiraju na dentinske zidove i otpuštaju klorheksidin najmanje 2 do 12 tjedana sprečavajući reinfekciju. Unatoč prednostima, klorheksidin nema sposobnost otapanja organskog i anorganskog sadržaja.

7.3. Natrijev hipoklorit (NaOCl)

Natrijev hipoklorit je zlatni standard u endodonciji. Ima svojstvo otapanja nekrotičnog tkiva i široki antiseptički učinak. Preporučene koncentracije variraju između 0.5% i 5.25%. Citotoksičnost NaOCl je proporcionalna koncentraciji.
Konzentracija od 2.5% daje najbolji kompromis između učinkovitosti i citotoksičnosti. Povišenje temperature 2.5% NaOCl na 37°C daje otopini učinkovitost jednaku 5.25% otopini NaOCl.

7.4. Jod

Jod ima antibakterijski, antifungalni, antivirusni učinak te djeluje i kao sedativ. Gnoj i krv ne poništavaju njegovo djelovanje. Nedostatak mu je što boji zubno tkivo u smeđu boju (7).

Povidon-jodid (Betadine) je površinski aktivan kompleksni spoj joda s polivinil-pirolidonom. To je smedi prašak bez mirisa dobro topljiv u vodi i alkoholu. Povidon-jodid kompleks je elementarnog joda s molekulom neutralnog organskog nosača koji ga postupno otpušta, djelujući dugotrajno baktericidno bez podražajnog učinka na tkivo (8).

7.5. Dinatrij-etilendiamintetraoctena kiselina (EDTA)

Kelatori su slabe kiseline, koje reagiraju s anorganskom komponentom dentina. EDTA-tip kelatora omogućuje bolje vlaženje i uklanjanje zaostatnog sloja (7). Djele oslobađanjem natrija i keliranjem kalcija iz dentina što rezultira djelomičnom demineralizacijom stijenke korijskog kanala (25). Korištenje EDTA-e prije ostalih irigansa pospješuje maksimalno preživljavanje matičnih stanica.

17% EDTA se često koristi u slučajevima bakterijske infekcije, kako bi se uklonio zaostatni sloj i otvorili ulazi u dentinske tubuluse što omogućuje bolju
penetraciju irigansa i intrakanalnih lijekova. EDTA pojačava bakteriostatsko i baktericidno djelovanje različitih irigansa. Njeno kelirajuće djelovanje omogućuje oslobađanje faktora rasta, koji ostaju zarobljeni u dentinu za vrijeme dentinogeneze, a može stimulirati proliferaciju matičnih stanica.

Ispiranje fiziološkom otopinom između svakog ispiranja različitim irigansa sprečava stvaranje precipitata, uklanja zaostatni sloj i ostatke irigansa (7).

7.6. Dezinfekcija aktivirana svjetlom (DAS)

Dezinfekcija aktivirana svjetlom predstavlja novi koncept u modernoj dentalnoj medicini. Zasniva se na kombinaciji kromoforme otopine (toluenski klorid) aktivirane laserom niske jakosti (Slika 2). Lasersko svjetlo aktivira kromofor i stvara kaskadu energetskog prijenosa, koji izaziva različite kemijske reakcije u kojima nastaju singletni kisik (O$_2^+$) i slobodni radikali, a oni eliminiraju mikrobe. DAS koristi kemijske kromofore uobičajeno nazvane fotosenzitizatori. Oni se vežu za stanične stijenke, a apsorbiranjem svjetla ulaze u pobuđeno stanje ubijajući bakterije. Postoje dva mehanizma reakcija. U tipu 1 dolazi do stvaranja visokoreaktivnih slobodnih radikala. U tipu 2 fotosenzitizator reagira s molekularnim kisikom i stvara sekundarno reaktivni kisik (singletni kisik), koji remeti staničnu funkciju.

Bakterijske stanice su generalno više osjetljive na svjetlom aktivirane fotosenzitizatore nego stanice sisavaca, jer posjeduju manje obrambenih mehanizama, koji bi im pomogli da prežive oksidacijski inzult (9). Afinitet fotosenzitizatora prema bakterijskim stanicama bi se mogao povećati njegovim
spajanjem s polilizinskim polimerom, koji ima afinitet za staničnu stijenku bakterije (10).

Slika 2. Toluenski klorid u sustavu kanala mandibularnog molara. Primijetite laserski nastavak (isključen) u kanalu. Preuzeto: (11)
8. MEĐUPOSJETNI LIJEKOVI

8.1. Kalcijev hidroksid (Ca(OH)₂)

U nekim slučajevima Ca(OH)₂ se pokazao uspješnim za dezinfekciju korijenskih kanala (12). Ipak, u potpunosti je neuspješan u borbi s tvrdokornom bakterijom Enterococcus faecalis (7). Visoki pH dovodi do omekšanja dentinskih zidova, izaziva nekrozu tkiva, što umanjuje mogućnost formiranja ugruška, a djelovanje upalnih eksudata umanjuje njegovu učinkovitost (7,13). Radi toga ga se aplicira isključivo u koronarnoj polovini korijenskog kanala, što dovodi u pitanje uspješnost ishoda terapije. Aplikacija Ca(OH)₂ u apikalnoj polovini bi izazvala citotoksičan učinak na matične stanice i kompromitirala bi ishod terapije (12).

8.2. Antibiotici

Sistemska primjena antibiotika zahtijeva distribuciju krvotkom, koja izostaje kod avitalnih, nekrotičnih zubi i time je nemoguće dopremiti lijek na ciljano mjesto. Upravo radi toga antibiotici se primijenjuju lokalno.

Fluora korijenskog kanala je polimikrobna i niti jedan antibiotik samostalno nije učinkovit. Sinergičnim djelovanjem više antibiotika postižu se značajni rezultati (12).
8.2.1. Trostruka antibiotska pasta (TAP)

Prema in vitro istraživanju Chuensombat i suradnicima, antibakterijski i citotoksični učinak je veći u slučaju mješavine trostrukih antibiotskih paste, nego samostalnom korištenju antibiotika. Niti jedan antibiotik nema dovoljno širok spektar djelovanja kako bi uništio svaku vrstu bakterija, koja obitava u korijenskom kanalu i apeksnom području. Upravo radi toga kombinacija antibioticima je od esencijalne važnosti da se maksimalno pokrije spektar djelovanja. Antibiotičke paste moraju se koristiti u pravilnoj koncentraciji kako bi se izbalansirala niska citotoksičnost na matične stanice i maksimalan antibakterijski učinak.

Hoshino i Takushige su dokazali da mješavina tri antibiotika u propilen glikolu, koja je unešena u kanal s lentulo spiralom u koncentraciji od 20 µg/mL, uništava više od 99% bakterijskih kolonija. Osim toga, dokazali su da je svaki antibiotik u sastavu paste, ukoliko korišten samostalno, neučinkovit u dezinfekciji korijenskog kanala. Naspram toga, trostruka antibiotska pasta omogućuje potpunu sterilizaciju korijenskog kanala. Sato i suradnici su razvili trostruku pastu s namjerom pokrivanja raznih vrsta bakterija korijenskog kanala. Trostruka antibiotska past ili Hashino pasta predstavlja zlatni standard u regenerativnoj endodonciji. Sastoje se od: minociklina, ciprofloksacina i metronidazola u omjeru 1:1:1 (7).

8.2.1.1. Metronidazol

Metronidazol sintetički je nitromidazol izoliran 1955. iz streptomice. Baktericid je i djeluje vezivanjem na bakterijsku DNK i sprečava sintezu nukleinskih
kiselina (8). Mentronidazol djeluje na anaerobe i protoze te inducira stvaranje fibroblasta (7).

8.2.1.2. Ciproflokscacin

Ciproflokscacin je sintetički fluorokinolon (14). Fluorokinoloni se zbog svojih fizikalno-kemijskih svojstava i zbog spektra djelovanja smatraju jednom od najdjelotvornijih skupina antimikrobnih lijekova korištenih u kliničkoj i veterinarskoj medicini u današnje vrijeme (15). Ciproflokscacin ima baktericidno djelovanje i djeluje na spektar gram⁺ i gram⁻ bakterija, te inducira stvaranje fibroblasta (7, 14).

8.2.1.3. Minociklin

Minociklin je polusintetski tetraciklinski derivat s istim spektrom djelovanja kao i ciproflokscacin, a to su gram⁺ i gram⁻ bakterije (7). Tetraciklini su bakteriostatici. Reverzibilno inhibiraju proteinsku sintezu vežući se za 30-S i 50-S podjedinice ribosoma bakterija (8). Inhibiraju kolagenaze i metaloproteinaze, nisu citotoksični i pojačavaju razinu interleukina-10 (antiinflamatornog citokina).

Minociklin može biti zamijenjen s cefaklorom, amoksicilinom ili dvostrukom antibiotskom pastom bez minociklina, kako bi se izbjeglo neestetsko obojenje krune zuba (7, 12). Minociklin se spaja s ionima Ca²⁺ procesom kelacije i stvara netopljive spojeve (7). Cefaklor pripada drugoj generaciji cefalosporina (16). Djeluje dobro na gram⁺ i gram⁻ mikroorganizme uključujući H. influenzae, Enterobacter, seracije i naiserije (8). Kako god, čini se da je cefaklor manje učinkovit protiv enterokoka.
TAP pokazuje najveći postotak uspješnosti u povećanju debljine dentina u tretiranim korijenskim kanalima uspoređujući je s drugim intrakanalnim lijekovima (kalcijev hidroksid i formokrezol) (7).

Enterococcus faecalis je značajna bakterija, budući da je prisutna u infekcijama koje su rezistentne na endodontske zahvate (12). Ne prevladava uvijek u primarnim infekcijama trajnih nezrelih zubi (7). Bakterija je gram+ i može preživjeti i opstati u korijenskom kanalu bez potrebe za drugim bakterijama. Invidira dentinske tubuluse i u njima preživljava. TAP je izuzetno učinkovita protiv bakterija koje nastanjuju inficirane korijenske kanale i čini se da je minociklin najaktivniji sastojak paste (7).

PH antibiotske paste je jako važan i poželjno je da je neutralan, kako ne bi štetno djelovao na matične stanice, a time i na ishod postupka revaskularizacije pulpe. Minociklin i ciprofloksacin imaju nizak pH. Metronidazol je jedini antibiotik u smjesi s neutralnim pH-om i time nema citotoksični učinak na stanice (7).

TAP se čini biokompatibilna, ali osim koronarne diskoloracije kao komplikacije, postoji mogućnost bakterijske rezistencije i alergijske reakcije na ovu skupinu antibiotika (7).
9. **EKSTRACELULARNI MATRIKS**

Potrebne su tri komponente da bi uspjela revaskularizacija: matične stanice, signalne molekule i ekstracelularni matriks. Mnoge studije su opisale primjenu krvi, plazme bogate trombocitima (PRP) i fibrina bogatog trombocitima (FRP) kao ekstracelularnog matriksa, a na terapeutu je odluka kojeg će koristiti (9).

9.1. Krv

U revaskularizaciji urastanje novog tkiva iz periapikalne regije zahtijeva prisutnost matriksa kao nosača. Matriks nastao od krvnog ugruška ne pruža samo bazu za matične stanice, nego i za njihov rast, diferencijaciju i migraciju. Ukoliko postoji povoljan intrakanalni matriks, nediferencirane mezenihmalne stanice mogu proliferirati i diferencirati se pod utjecajem Hertwigove epitelne ovojnice i ponovno uspostaviti vitalitet pulpe. Ove stanice mogu potjecati iz ostataka apikalne pulpe, parodontnog ligamenta, zubne papile ili koštane srži. Danas se uobičajeno koristi krvni ugrušak kao matriks. Krvarenje se inducira namjernom preinstrumentacijom i iritacijom periapikalnog područja. Formirani ugrušak se sastoji od umreženog fibrina, koji služi kao staza za migraciju matičnih stanica iz periapikalnog područja. Nadalje, krvni ugrušak sadrži različite stanice s nekoliko faktora rasta, koji su važni za proces cijeljenja, a to su: trombocitni faktor rasta (PDGF), vaskularni endotelni faktor rasta (VEGF), trombocitni epidermalni faktor rasta (PDEGF) i tkivni faktor rasta (TGF) (21). Krvarenje inducira angiogenezu i pomaže nastanjenju matičnih stanica važnih za uspješan ishod terapije (13). Ipak ne može se u potpunosti osloniti na ove faktore, budući da je nepredvidljiva količina stanica ulovljena u fibrinski...
ugrušak. Upravo kumulativni učinak gore spomenutih faktora, vodi do proliferacije i diferencijacije stanica u odontoblaste, pod organizacijskim učinkom Hertwigove epitelne ovojnice (HERS). Novostvorenakupina odontoblasta, koji potječu od matičnih stanica pulnog tkiva ili zubne papile odlaže atubularni dentin, kako na apikalnom kraju tako i lateralnim stijenkama korijenskog kanala, što dovodi do nastavka rasta i razvoja korijena u duljinu i širinu (21).

9.2. Plazma bogata trombocitima (PRP)

Plazma bogata trombocitima predstavlja autologni koncentrat trombocita, koji je bogat izvor faktora rasta i predložena je kao potencijalni dodatak ili nadomjestak ekstracelularnog matriksa, sa svrhom unaprijeđenja ishoda zahvata (13). Upravo radi gore navedenih nedostataka krvnog ugruška i u težnji da se poveća proces cijeljenja, uporaba plazme bogate trombocitima je krajnje poželjna. To je prva generacija, autolognog koncentrata trombocita, koji sadrži različite faktore rasta, kao što su trombocitni faktor rasta (PGF), pretvorbeni čimbenik rasta β, inzulinu sličan faktor rasta (IGF-1), vaskularni endotelni faktor rasta (VEGF), epidermalni faktor rasta (EGFR) i epidermalni faktor rasta (EGF). Ovi faktori rasta se otpuštaju u trenutku degranulacije trombocita na različite načine: dodatkom trombina, produktima koji sadrže kalciij (npr. kalicijev klorid, kalcijev sulfat itd.) ili čak potresanjem trombocita.

Plazma bogata trombocitima se koristi upravo da poboljša ishod revaskularizacijskog postupka, tako da stabilizira postojeći krvni ugrušak i pojača proces angiogeneze. Također pomaže u neprekidnom otpuštanju faktora rasta, koji
igraju važnu ulogu u jačanju, retenciji i proliferaciji matičnih stanica, a oni vode željenom rastu i razvoju korijena. Kako god, uporaba plazme bogate trombocitima ima nekoliko nedostataka: zahtijeva vađenje krvi kod mladih pacijenata, specijalnu opremu i reagense za pripremu (13).

9.3. Fibrin bogat trombocitima (PRF)

Fibrin bogat trombocitima je prvi puta razvio Dohan i suradnici za specifičnu uporabu u oralnoj i maksilofacialnoj kirurgiji. Znanstveno obrazloženje fibrina bogatog trombocitima leži u činjenici da su trombocitne α-granule rezervoar mnogih faktora, koji igraju presudnu ulogu u mehanizmu reparacije tvrdih i mekih tkiva. U njih ubrajamo trombocitne faktore rasta (PDGFs), pretvorbeni čimbenik rasta β, vaskularni endotelni faktor rasta (VEGF), epidermalni faktor rasta (EGF) i inzulinu sličan faktor rasta (IGF-1). Trombocitni faktori rasta (PDGFs) oslobađaju kemotaktičke i mitogene čimbenike, koji pokreću i podešavaju funkcije uključene u cijeljenje tkiva, regeneraciju i staničnu proliferaciju.

Objavljeno je da je regeneracija inficiranih i nekrotičnih nezrelih zubi moguća pod uvjetom zadovoljavajuće dezinfekcije korijenskog kanala. Budući da je fibrin bogat trombocitima idealan biomaterijal za regeneraciju pulpo-dentinskog kompleksa, koristi se u te svrhe (9).

9.4. Nekrotična sterilna pulpa

Postoje uspješna izvješća revaskularizacije kod zubi nakon replantacije. U ovom slučaju nekrotična, ali neinficirana pulpa kod avulziranih zubi, služi kao
ekstracelularni matriks u koju urasta tkivo iz periapikalnog područja (14). Serija kliničkih slučajeva jasno pokazuje da je u određenim okolnostima regeneracija tkiva u zubi s nekrotičnom pulpom i širokim apeksnim otvorima moguća, a očituje se i pozitivnim odgovorom na podražaje hladnoće, električne podražaje (EPT) i laser doppler flowmetriju (LDF) (1).
10. MATERIJALI ZA DIREKTNO PREKRIVANJE MatrikSA

10.1. Mineral trioksid agregat (MTA)

MTA na tržište dolazi kao dvokomponentni sustav pasta/pasta te prašak/tekućina (17) (Slika 3). Sastoji se od 50-75% kalcijeva oksida, te 15-25% silicijeva dioksida, koji kad se pomiješaju stvaraju trikalcijev silikat, dikalcijev silikat, trikalcijev aluminat te tetrakalcijev aluminoferit. Bizmutov oksid se dodaje radi postizanja radiokontrastnosti (18). Djelovanje MTA se temelji na njegovoj pH vrijednosti od 12.5 koja traje 3 sata nakon miješanja i otpuštanju kalcijevih iona i formiranju kalcijevih kristala. Također potiče metabolizam stanica, cementogenezu, osteogenezu i proliferaciju stanica. Nedostaci MTA su mogućnost diskoloracije zubi zbog prisustva željezovih i manganovih iona, teško rukovanje, dugo vrijeme stvrdnjavanja (45 minuta do 2 sata) i cijena (19).

Dvostruka aplikacija MTA u pristupni kavitet ispod CCS se pokazala kao odlično brtvilo. Postavljanje MTA stvara jaku barijeru bakterijama i u kontaktu s krvnim ugruškom stimulira signalne molekule na rast matičnih stanica (20).

Slika 3. Mineral trioksid agregat (MTA) Preuzeto: Tomislav Škrinjarić
10.2. Biodentine

11. POSTENDODONTSKA OPSKRBA ZUBA

Osim dezinfekcije korijenskog kanala i uporabe prikladnog ekstracelularnog matriksa, kvaliteta koronarnog ispuna je također jako važna, kako bi se postigao uspjeh revaskularizacijskog zahvata. Ovakav kritičan zahtjev se može ispuniti uporabom bakterijski-nepropusnog ispuna, koji može biti kompozit, staklenionomerni cement modificiran smolom i ostale njihove kombinacije (13).

Za završni ispun koji bi trebao biti u potpunosti nepropustan, nije toliko važan materijal izbora, koliko važnost da bude hermetičan i postojan (7).

12. EVALUACIJA USPJEHA

Uspjeh postupka revaskularizacije pulpe može se evaluirati kroz određene parametre (1):

1. zub bez simptoma i periapikalne patologije
2. debljina dentinskih zidova povećana i apeksni otvor zatvoren
3. nastavak rasta i razvoja korijena
4. stvaranje dentinskog mosta ispod MTA 1 godinu nakon zahvata (3).
5. pozitivni ili negativni odgovor pulpe na testove vitaliteta
6. razina radiolucencije na RTG snimkama
7. stupanj diskoloracije zuba nakon primjene trostrukih antibiotičkih pasti (TAP)
8. histološke karakteristike regeniranog tkiva, kao što je dentin, cement i kost
13. KLINIČKI POSTUPAK

13.1. Prva posjeta

- Postavljanje koferdana i premazivanje zuba sa 10% otopinom Betadinea (7)
- Aplikacija lokalnog anestetika (Slika 4)

Slika 4. Lokalna anestezija. Preuzeto: Tomislav Škrinjarić

- Irigacija i dezinfekcija-Izrađuje se pristupni kavitet i drenira gnoj ukoliko postoji (Slika 5 i 6).

Slika 5. Izrada pristupnog kaviteta. Preuzeto: Tomislav Škrinjarić
Instrumentacija se ne provodi. Uklanjanje nekrotične pulpe postiže se isključivo laganom irigacijom s NaOCl, jer ima svojstvo otapanja tkiva i snažno antimikrobno djelovanje (Slika 7).

Slika 7. Irigacija korijenskog kanala s NaOCl. Preuzeto: Tomislav Škrinjarić

Primarno ispiranje s NaOCl se može kombinirati s EDTA (koja je minimalno citotoksična i otvara dentinske tubule) i na taj način omogućuje bolju penetraciju irigansa i medikamenata u zakutke korijenskog kanala i dentinske tubule. Ukoliko se koristi EDTA, preporuča se međuispiranje s NaOCl, kako bi se izbjeglo moguće stvaranje precipitata (7). Ispire se s 20 ml otopine NaOCl u koncentracijama od 1.25% do 5.25% i ostavlja se da agens djeluje 10 minuta (1).
Inicijalno ispiranje NaOCl se nastavlja s ispiranjem 5 ml fiziološke otopine (0.9% NaCl), kako bi se izbjeglo stvaranje neželjenog narančasto-smedeg precipitata para-kloranilina (PCA), koji nastaje reakcijom NaOCl i CHX, a time i diskoloracija zuba u smeđu boju. Osim toga, pokazalo se da je precipitat citotoksičan i zatvara ulaze u dentinske tubuluse (3, 22). Završno ispiranje se izvodi s 10 ml 2% CHX. CHX se koristi kao završni irigans, jer ima snažno antibakterijsko djelovanje i supstantivan je. Prilikom irigacije s NaOCl, treba paziti da igla stoji labavo u kanalu i da se irigans aplicira polagano. Igla bi trebala biti u kanalu postavljena 2 mm kraće od apeksnog otvora. Radna duljina se odredi korištenjem RTG snimke (2-3 mm kraće od apeksa) (6), Treba paziti da agensi ostanu isključivo unutar kanal. Korijenski kanal se suši korištenjem sterilnih papirnatih štapića (paper points) (3) (Slika 8).

Slika 8. Sušenje korijenskog kanala papirnatim štapićem (paper point).

Preuzeto: Tomislav Škrinjarić

Ostali irigansi, koji se navode u literaturi i pokazuju uspjeh u ispiranju korijenskih kanala su povidon-jodid i 3% vodikov peroksid (12).
• **Trostruka antibiotska pasta (TAP)**-TAP pasta (metronidazol, ciprofloksacin i minociklin) ili alternativna pasta s cefaklorom (umjesto minocikлина) se zamješa u kremastu konzistenciju i unosi u kanal uz pomoć lentulo spirale na sporom kolječniku ili korištenjem K-file proširavača s okrtima suprotnim kazaljci na satu (1) (Slika 9).

![Slika 9. Aplikacija trostruke antibiotske paste (TAP) u korijenski kanal s lentulo spiralom. Preuzeto: Tomislav Škrinjarić](image)

• **Privremeni ispun**-Vatica i SIC se postavljaju na 4 tjedna (12) (Slika 10).

![Slika 10. Izrada privremenog SIC ispuna. Preuzeto: Tomislav Škrinjarić](image)
13.2. Druga posjeta

- **Postavljanje koferdama i premazivanje zuba sa 10% otopinom Betadinea**
- **Aplikacija lokalnog anestetika bez vazokonstriktora**
- **Irigacija i dezinfekcija** - TAP se uklanja (i ponovno postavlja ukoliko je potrebno) korištenjem 1.25-5.25% NaOCl, fiziološke otopine i 2% CHX. Instrumentacija se ne provodi.
- **Poticanje krvarenja i formiranje krvnog ugruška** - krvarenje apikalnog tkiva izvan korijenskog kanala se potiče sa sterilnom endodontskom iglom ili iglom za davanje anestezije (Slika 11).

![Slika 11. Poticanje krvarenja. Preuzeto: Tomislav Škrinjarić](image)

Kada krv približno dosegne razinu caklinsko-cementnog spojišta (CCS), postavi se sterilna kuglica vatice u koronarnu trećinu kanala (Slika 12).
Potrebno je 15 minuta da se stvori krvni ugrušak (7) (Slika 13).

Druga metoda koja se koristi kod poticanja krvarenja je ta da se endodontska iglica lagano savije na vrhu i umoči u EDTA (23).

a) **PRP kao dodatak krvnom matriksu.**

Pacijentu se vadi čista krv iz antikubitalne vene. Izvadena krv se postavlja u sterilnu, staklenu epruvetu obloženu antikoagulantom (citrat dekstroza). Cijela krv se prvotno cetrifugira u dva akta:
1. Prvi je sporo centrifugiranje na 2400 o/min 10 min., kako bi se razdvojio fibrin obogaćen trombocitima (PRP) i plazma siromašna trombocitima (PPP) od hematokrita kao taloga.

2. U drugom aktu opet se centrifugiraju sakupljeni PRP i PPP u tzv. brzom centrifugiranju na 3600 o/min. Intrakanalno krvarenje se potiče kao i u prethodnom opisu. Svježe pripremljeni PRP se namoči na sterilnu spužvicu kolagena (Metrogene, Septodont, France) dimenzija 1 mm² x 1 mm² i postavi u kanal i pogurne u srednju trećinu kanala s ručnim pluggerom #30 (13).

b) PRP kao nadomjestak krvnom matriksu.

Krv se izvadi i pripremi kao u gornjem slučaju, ali se ne inducira krvarenje, već se PRP, koji je želatinozne konzistencije kondenzira u kanal koristeći se ručnim pluggerom sve dok se ne dosegne razina CCS (9).

- **Aplikacija MTA**-bijeli MTA (da bi se izbjegla diskoloracija) se miješa prema preporukama proizvođača. Prvotno se nosi i postavlja u koronarnu trećinu kanala s MTA-nosačem i nakon toga se kompaktira s vlažnom vaticom ili sterilnim proširivačem (Slika 14).
Kompaktira se do 5 mm u korijenski kanal (Slika 15).

Preuzeto: Tomislav Škrinjarić

Preporuča se aplikacija MTA u dva sloja, jer se time dobiva ispun, koji odlično brtvi. Sterilna vatica umočena u fiziološku otopinu se postavlja preko MTA i pristupni kavitet se zatvara s privremenim restaorativnim materijalom (IRM, Cavit) na 12-24 sata (1, 21).

Zadržavanje MTA dalje od apeksa može biti izazovno. Zbog slabe snage krvnog uguruška, može doći do urušavanja materijala, što može negativno utjecati na ishod
postupka. Tehnika koja se pokazala učinkovitom u kontroli postavljanja MTA je postavljanje kolagenog matriksa preko krvnog ugruška prije kondenzacije MTA (12).

- **Postendodontska opskrba**-nakon 2 dana, uklanja se privremeni ispun i postavljena vatica, te se izrađuje definitvna restauracija sa smolom-modificiranim GIC i/ili kompozitom (12). (Slika 16).

Pojedini autori ostavljaju vaticu i privremeni ispun i do 2 tjedna. Nakon uklanjanja istog, može se dogoditi da je MTA smješten malo apikalnije. U tom slučaju prazan dio kanala treba ispuniti nekom od termoplastičnih tehnika punjenja korijenskog kanala (npr. Obtura II) (2).

- **Kontrola uspjeha**-pregled svaka 3 mjeseca i praćenje razvoja korijena i zatvaranja apeksa (3).
14. RASPRAVA

Uspjeh regenerativne endodoncije ovisi o tipu i duljini trajanja infekcije, stanju pulpe u trenutku kada je zahvat započeo, domaćinu i veličini apeksnog otvora. Revaskularizacija je previdljivija kod zubi s otvorenim apeksima. Također je primijećeno kako replantacija avulziranog zuba s apeksnim otvorom od otprilike 1.1 mm pokazuje veću vjerojatnost revaskularizaciji. Ovo upućuje na to da revaskularizacija nekrotične pulpe kod potpunog zatvorenog apeksa možda zahtjeva instrumentaciju zubnog apeksa i povećanje promjera apeksnog otvora na 1 do 2 mm, kako bi se omogućilo optimalno krvarenje u sustav korijenskog kanala.

Obilno krvarenje kroz široki apeksni otvor može biti važan faktor u očuvanju i poticanju vitaliteta stanica pulpe. Nezatvoreni apeksni otvor olakšava urastanje tkiva u korijenski prostor i bogat je izvor mezenhimalnih matičnih stanica koje potječu od apikalne papile.

Dob pacijenta također može igrati značajnu ulogu u uspjehu postupka revaskularizacije, budući da su neke studije dokazale da mlađi pacijenti imaju veću sposobnost cijeljenja i njihove matične stanice imaju veću sposobnost regeneracije.

Druga bitna značajka koja dopinosi uspjehu zahvata je neprimjenjivanje instrumentacije u toku zahvata. Glavni razlog je prevencija potencijalne frakture tankih, nepotpuno razvijenih korijenova i izbjegavanje stvaranja zaostatnog sloja, koji bi zatvorio dentinske tubuluse.

Bitan aspekt ove vrste zahvata je i korištenje intrakanalnih irigansa (NaOCl, CHX) s primjenom antibiotika (ciprofloksacin, metronidazol i minociklin) na
nekoliko tjedana. Ova kombinacija antibiotika uspješno dezinficira korijenske kanale i povećava revaskularizaciju. Budući da NaOCl sam ne može u potpunosti dezinficirati površinu korijena, dodan je CHX, jer je supstantivan i ima jak antimikrobni učinak. Dezinfekcija korijenskog kanala se većinom provodi kemijskom obradom, a ne kemomehaničkom (20).

Današnji protokoli za revaskularizaciju mladih trajnih zubi s apikalnim parodontitisom obično predlažu uporabu pola snage (2.5%) ili punu snagu (5,25%) NaOCl kako u prvoj, tako i u drugoj posjeti. Istraživanja pokazuju da uporaba nižih koncentracija NaOCl utječe na očuvanje vitaliteta postojećih stanica pulpe, a time i na uspjeh terapije. Čini se da kliničari zapravo sami sebi umanjuju uspjeh korištenjem preporučenih koncentracija NaOCl. Potrebni antimikrobni učinak i otapanje nekrotičnog tkiva se postiže u prvoj posjeti, korištenjem pune ili polovine koncentracije NaOCl zajedno s postavljenom trostrukom antibiotskom pastom. Upravo zato se čini logičkim da se u drugoj posjeti posegne s razrijeđenim NaOCl, kako bi se očuvao vitalitet stanica pulpe. Smanjena koncentracija bi trebala očuvati okoliš korijenskog kanala povoljnim za proliferaciju stanica. Lovelace i suradnici smatraju da je isključivo uporaba fiziološke otopine (0.9% NaCl) u drugoj posjeti kao jedinog irigansa dovoljna da bi se zahvat uspješno proveo. Istraživanja Omidbakhsh pokazuju kako razrijeđena koncentracija od 0.04% NaOCl ima značajna antimikrobna svojstva i ne ugrožava vitalitet stanica pulpe. Održavanje postojećeg vitaliteta pulpe u postupku revaskularizacije igra jednu od vodećih uloga, koje utječu na uspješan ishod zahvata. Budući da trostruka antibiotska pasta, koja se koristi u brojnim istraživanjima revaskularizacije, ima izvrsna antimikrobna svojstva i pulpno tikvo je dobro podnosi, korištenje viših koncentracija NaOCl, osobito u drugoj
posjeti, može biti štetno na vitalne pulpne stanice. Korištenje manjih koncentracija NaOCl može smanjiti citotoksični efekt ukoliko se protisne kroz apikalni otvor. Ovakva promjena u protokolu zahvata revaskularizacije bi mogla voditi do povećanja kliničke uspješnosti zahvata (23).

Trostruka antibiotska pasta (TAP) se pokazala uspješnom u poticanju i popravku periapikalnog tkiva. Dokazana je klinička uspješnost TAP kod periapikalnog parodontitisa. Sistemska ordiniranje antibiotika zahtjeva suradnju pacijenta i održavanju terapijske doze tako da se lijek apsorbira u probavnom sustavu i distribuira krvožilnim sustavom do inficiranog mjesta u tijelu. Inficirano područje zahtjeva normalnu krvnu opskrbu, koja ne postoji u slučaju nekrotičnih zubi i zubi bez vitalnog pulpnog tkiva. Upravo zato se primjenjuje lokalna antibiotska terapija, koja je daleko učinkovitija od peroralnog uzimanja lijeka. Mikroorganizmi u dentinskim tubulusima čine rezervoar, pri čemu se korienski kanal i periapikalno tkivo može ponovno inficirati. Portenier i suradnici su pokazali da dentin sam po sebi ima inhibitorni učinak na baktericidni učinak intrakanalnih lijekova, kao što je kalcijev hidroksid. William Windley je primijetio statistički značajnu redukciju bakterija, tako što je pratio protokol irigacije i aplikacije TAP. 90% bakterija je preživjelo irigaciju s 10 ml 1.25% NaOCl. Kako god, udio preživljevaja bakterija pao je na 30% nakon 2 tjedna djelovanja TAP. Zabrinjava bakterijska rezistencija, koja se može javiti nakon uporabe TAP. Minociklin vjerojatno izaziva diskoloraciju. Zhibodeau i Trope predlažu da se minociklin zamijeni cefaklorom, kako bi se prevenirala diskoloracija, ali je ona zapravo na taj način samo smanjena. Diskoloracija vezana uz tetraciklinsku skupinu antibiotika se vezuje uz fotoreakciju (14). Postavlja se pitanje, je li vrijedno odreći se koristi učinka minociklina
mijenjajući ga za cefaklor, zbog diskoloracije? Ne bi li trebalo odmah zabrtviti dentinske tubuluse i izbjeći koronarnu diskoloraciju? (7). Upravo zato treba ograničiti prisustvo TAP u prostor kanala, kako bi se izbjegla diskoloracija krune (14).

Krvni ugrušak se može dobiti iritacijom bilo kojeg preostalog vitalnog pulpog tkiva korištenjem endodontske sonde u zubi s nezatvorenim apeksom ili instrumentacijom zuba 1 do 2 mm preko apeksa, kako bi se potaklo krvarenje u kanalni sustav. Formiranje krvnog ugruška (npr. fibrina) zarobljava stanice sposobne za stvaranje novog tkiva (20).

Budući da se revaskularizacija pokazala uspješnom samo kod zubi s dezinficiranim korijenskim kanalima, važno je naglasiti koliko je važna uloga koronarnog ispuna. Koronarni ispun treba biti nepropustan i onemogućiti invaziju bakterija u pulpni prostor, prije nego što revaskularizacija uopće započne. Neke
studije nisu koristile MTA (20). Umjesto njega pristupni kavitet je zatvoren s GIC tako da se materijal postavi 4 mm duboko u koronarni dio korijenskog kanala, te su na taj način postignuti slični rezultati (1).

Dentalna trauma može prekinuti neurovaskularni snop zuba i dovesti do nekroze i prekida razvoja korijena zuba. Tradicionalni pristup liječenju nekrotičnih i nerazvijenih trajnih zubi bila je apektifikacija s Ca(OH)$_2$ ili MTA. Ona ne dovodi do daljnje zadebljavanja dentinskih zidova i povećanja duljine korijenskog kanala. Teško je dobiti prikladno punjenje kod zubi sa široko otvorenima apektima, korištenjem konvencionalnih endodontskih metoda. Dugoročno korištenje Ca(OH)$_2$ ima nekoliko nedostataka, kao što je potreba za višestrukim posjetama, vjerojatna rekontaminacija korijenskih kanala kroz dulji period vremena liječenja i povećana lomljivost korijenskog dentina, koja povećava rizik od buduće frakture cervikalnog dijela korijena. Alternativni materijal izbora za apektifikaciju je MTA i pokazao je veliku razinu uspjeha (14). Unatoč tome, in vitro studije su pokazale da Ca(OH)$_2$ i MTA sa svojim visokim pH dovode do ozbiljnog slabljenja dentinskog zida u razdoblju od 2 tjedna do 2 mjeseca. Ipak, uzorci s MTA uspjevaju vratiti svoje mehaničke značajke, kao što je lomna žilavost, što nije slučaj kod Ca(OH)$_2$ (7).

Važno pitanje koje se postavlja je podrijetlo novog pulpnog tkiva. Prije svega, nije jasno je li novo tkivo pulp ili ne, ali klinički slučajevi koji su opisani do danas navode uspješnost u daljenjem razvoju korijena i pozitivnim reakcijama na testove pulpe, kao što su pozitivan test na toplinu i električni test pulpe (ETP).

1. Jedna mogućnost je da nekolicina pulpnih stanica ostaje u apektnoj trećini korijenskog kanala, iako je većinom pulp avitalna i inficirana. Stanice moraju imati dostupnu opskrbu kisikom da bi opstale i upravo je to razlog zašto stanice u
koronarnoj trećini pogodene hipoksijom ne preživljavaju (20). Stanice koje u apikalnoj trećini preživljavaju su stanice pulpe, multipotentne matične stanice pulpe, matične stanice parodontnog ligamenta i matične stanice dentalne papile (3). Bogati krvni protok kroz široki apeksni otvor može biti faktor u očuvanju vitaliteta stanica pulpe u apeksnoj trećini. Te stanice proliferiraju i diferenciraju se u odontoblaste pod organizacijskim utjecajem Hertwigove epitelne ovojnice, koja je prilično otporna na destrukciju čak i u prisutnosti upale. Novodiferencirani odontoblasti nakon toga odlažu tercijarni dentin na područje apeksa i postranične stijenke korijena povećavajući time duljinu korijena i debljinu dentinskih zidova.

2. Druga mogućnost je radiografska evidencija odloženog tvrdog zubnog tkiva, koja možda nastaje zbog urastanja dentina, cementa ili kosti (20).

Kako god, treba ukazati na to da je nastavak rasta korijena nakon aepsogeneze fiziološki proces, jer je radikularni dio pulpe očuvan i vitalan. Međutim, kod mladih zubi koji su pretrpjeli apikalni parodontitis i potvrgnuti su zahvatu revaskularizacije, novonastalo tkivo se opisuje kao parodontu slično vezivno tkivo, a stečena duljina korijena i zadebljanje dentinskih zidova se pripisuje novonastalom cementu ili cementu sličnom tkivu (24).

Postoji nekoliko prednosti revaskularizacije korištenjem krvnog ugruška. Tehnika je vrlo jednostavna i može biti provedena korištenjem trenutačno dostupnih materijala i lijekova (cost benefit). Povrh toga, smanjujemo rizik na minimum od stvaranja imunosne reakcije i mikrobne transmisije, tako što koristimo pacijentove vlastite krvne stanice, umjesto tkivnog inžinjerstva. Vrijeme liječenja je znatno smanjeno.

Kako god, sigurno postoje mane ovog zahvata i potrebne su dodatne studije s dugoročnim ishodom, kako bi se u potpunosti shvatio potencijal ove tehnike.
Potpuna obliteracija kanala je jedna od mogućnosti, koja može kompromitirati prognozu zahvata. U slučaju kada je postavljenje nadogradnje i krunice uključeno u terapijski plan, revaskularizacija nije pravi zahvat izbora, jer vitalno tkivo u apikalne 2/3 kanala može biti povrijeđeno postavljanjem kolčića. Također, objašnjenje krvnog ugruška i njegovog sastava je prilično nepouzdano, budući da različita koliciina i vrsta stanica može biti ulovljena u fibrinske niti. Upravo radi toga tkivno inžinjerstvo teži izradi standarnog matriksa, koji se sastoji od definirane koliciine i sastava stanica. Čini se vrlo vjerojatnim da sastav stanica pokazuje velike varijacije u koliciini i sastavu kod starijih pacijenata (cirkulacija matičnih stanica smanjena) i može voditi do varijacija u ishodu zahvata (20).

Idealan ishod regenerativnog postupka je asimptomatski zub, koji više ne treba ponovne zahvate. Do danas, revaskularizacija pulpe se većinom primijenjivala na mladim pacijentima, budući da oni imaju visoku razinu matičnih stanica i zube s
otvorenim apeksima. Fibrinski matriks je ekstremno nepouzdan, ali se i dalje najviše primijenjuje. Kako bi se razvili široko dostupni i predvidljiviji zahvati, trebaju se uzeti u obzir alternativne regeneracijske metode. One se odnose na uporabu matriksa načinjenog od fibrina, ubrizgavanjem matičnih stanica u korijenski kanal. Matične stanice mogu biti uzete s različitih tkiva, kao što je bukalna mukoza dobivena biopsijom, matičnim stanica dobivenim iz pupčane vrpce itd. Kako god, alternativne metode trebaju biti istražene pretklinički in vitro studijama, studijama na životinjama i naposljetku kliničkim ispitivanjima, koje će doprinijeti boljšemu čovječanstvu (20).
15. **ZAKLJUČAK**

Regenerativna endodoncija je novo područje u nastajanju, koje se koncentrira na zamijeni traumatiziranog i bolesnog pulpnog tkiva zdravim tkivom kod mladih, trajnih zubi s nezavršenom rastom i razvojem korijena. Bavi se cijeljenjem oštećenih zubnih tkiva, uključujući dentin, pulpu, cement i parodontni ligament.

Kada je kanal valjano dezinficiran, upalni proces se povlači i tkiva mogu proliferirati. Budući da je infekcija korijenskog kanala polimikrobna, potrebno je koristiti kombinaciju lijekova. Trostruka antibiototska pasta (TAP) sadržava bactericidne antibiotike (metronidazol, ciprofloksacin) i bakteriostatski (minociklin). TAP je biokompatibilna i uništa 99% bakterija u kanalu (14).

Revaskularizacija nezrelih zubi s apikalnom parodontitisom ovisi najviše o trijasu (7):

1. dezinfekciji kanala
2. matriksu u koji urasta novo tkivo (krvni ugrušak)
3. bakterijski nepropustnom ispunu koji zatvara pristupni kavitet

Stvaranje novog i funkcionalnog tkiva zahtjeva tri ključna elementa (7):

1. matične stanice
2. faktore rasta
3. matriks

Mnogi koraci u postupku revaskularizacije su tehnički izazovni, a podaci o uspješnosti ovog zahvata su većinom svedeni na opise kliničkih slučajeva. Pokazalo se da je revaskularizacija pulpe uspješna i kao zahvat ima veliku korist za pacijenta. Stoga je vrijedi pokušati provesti, a ako i ne uspije, uvijek se može pribjeći tradicionalnijim metodama (apeksifikacija) (12).
16. SAŽETAK

Regenerativna endodoncija u dječjoj stomatologiji

17. SUMMARY

Regenerative endodontics in pediatric dentistry

Pulp revascularization is a relatively new and promising biological method in the treatment of immature permanent teeth. The revascularization of these teeth is based on the concept that vital stem cells in the apical papilla can survive pulpal necrosis, even in the presence of periapical infection. These cells have the ability to generate a highly vascularized living tissue. Therefore, a minimal mechanical instrumentation is recommended to preserve stem cells and an already thin dentinal walls. Chemical disinfection with NaOCl, CHX and intracanal placement of triple antibiotic paste (TAP) is recommended. A TAP is considered to be the golden standard for this procedure containing equal proportions of metronidazole, ciprofloxacin and minocycline. An intentional induction of bleeding from peri-apex and a formation of an intra-canal blood clot acts as a matrix for the cells from the periapical area. Not only the blood, but also the platelet-rich plasma and the platelet-rich fibrin are a rich source of growth factors and a potential addendum or substitute matrix which improve the outcome of the procedure. A bacteria-tight seal should be created coronally to inhibit bacterial invasion into the pulp space. MTA is considered to have excellent sealing ability, because it creates a hard barrier and also provides signaling molecules for the growth of stem cells. Final hermetic filling should be as airtight as possible and sustainable. Composites or resin-modified glass ionomer cements can be used. The regenerative therapy requires less dental appointments when compared to the apexification and provides root elongation, apex closure as well as reinforcement of lateral dentinal walls with deposition of hard dental tissue.
18. LITERATURA

19. ŽIVOTOPIS