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Abstract: Background: Recent advances in mRNA vaccine technology, accelerated by the
global COVID-19 pandemic, have generated significant interest in their applications beyond
infectious diseases. Dentistry has emerged as a promising field for exploring the potential of
mRNA-based therapies in preventing and treating oral diseases. Objectives: This narrative
review aims to evaluate the current status of mRNA vaccine development and its preclinical
applications in oral health, focusing on periodontal disease, dental caries, regenerative
medicine, implantology, and oral cancer. Methods: The review synthesizes findings from
preclinical studies, including research conducted in animal models and in vitro, to assess
the potential of mRNA-based therapies to modulate immune responses and promote
tissue regeneration in the oral cavity. Clinical trials were only mentioned in the context of
broader areas of mRNA vaccine implementation such as oncology and immunotherapy.
Results: The preclinical studies highlight the capacity of mRNA vaccines to enhance the
body’s immune response and facilitate tissue repair processes. Despite these promising
results, challenges persist in delivering mRNA vaccines effectively within the complex oral
environment. These challenges include vaccine stability, delivery mechanisms, and the
modulation of immune responses. Conclusions: While mRNA vaccines offer significant
promise for revolutionizing oral health care, they face notable limitations concerning safety,
efficacy, and clinical feasibility. Overcoming these obstacles through further research is
essential to unlock their full translational potential and ensure their safe and effective
integration into dental practice.

Keywords: dentistry; mRNA vaccines; periodontal disease; oral health; dental caries;
immune modulation; implantology; regenerative medicine

1. Introduction
mRNA vaccines have proven to exhibit great potency amid the recent COVID-19

pandemic [1]. Nevertheless, one should not stop at just recognizing the significant effects
demonstrated in the field of infectious diseases and epidemiology [2]. Such vaccines have
been proven to play a role in the complex immunopathogenesis of numerous conditions,
displaying anti-inflammatory, immunomodulatory, antitumor, and regenerative effects [3–5]
(Figure 1). Despite these advancements, their application in dentistry is still in its early
stages [6]. Research has primarily focused on the potential for mRNA vaccines to address
common oral health issues like periodontal disease [7], implantology [8], dental caries [9],
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and oral cancer [10]. However, there are significant gaps in understanding how mRNA
vaccines can be effectively tailored to the unique environment of the oral cavity [11]. Key
challenges include navigating microbial interactions, mitigating immune response risks,
ensuring long-term safety, and addressing cost barriers to promote equitable access. Addi-
tionally, optimizing delivery methods and enhancing the ability to modulate local immune
responses for effective tissue regeneration are critical [12]. This narrative review critically
examines preclinical studies on mRNA vaccines in dentistry, assessing their potential to rev-
olutionize oral health care [13]. Through a comprehensive analysis of the existing research,
we aim to clarify the current knowledge, highlight gaps, and propose future research direc-
tions [14]. Ultimately, we seek to advance mRNA vaccines as a promising therapeutic option
in dentistry, addressing both the promise and the challenges of this emerging field [15].
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inflammatory, immunomodulatory, antitumor, and regenerative effects.

2. Basic Principles
2.1. mRNA Vaccines in Dentistry: Overview and Potential

The science behind mRNA vaccines and their production and application is advancing
at an unprecedented pace, largely due to promising results in numerous preclinical studies
across a broad spectrum of medical fields [16–19]. Notably, mRNA-based therapies are
being recognized as potential solutions for a range of conditions that pose a significant
economic burden, such as cancer, heart failure, immunological diseases [20], and even
rare genetic diseases [21]. Their unique appeal lies not only in their versatility but also in
the relatively low-cost and straightforward production methods, coupled with an appli-
cation process that is less complex and associated with relatively few adverse effects [22].
mRNA is directly delivered to the cytoplasm using nanoparticle carriers, protecting it from
degradation and enabling efficient cell uptake. Since translation occurs in the cytoplasm,
there is no risk of foreign DNA integration into the genome, and without the need for
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viral vectors, the risk of insertional mutagenesis and autoimmune reactions is significantly
reduced [23]. Although these advances are encouraging, the application of mRNA vaccines
in dentistry is still in its early stages, but it holds significant potential for the future [24].
mRNA technology offers an exciting opportunity to address dental pathologies such as
periodontal disease, dental caries, and oral cancers—conditions that have been proven
challenging to treat effectively [25]. One of the key advantages of mRNA vaccines is
their ability to modulate immune responses and stimulate tissue regeneration [26]. For in-
stance, in oral lichen planus (OLP), mRNA encoding immunomodulatory proteins such as
interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) could help regulate the
T-cell-mediated immune response, reducing inflammation in OLP, while mRNA encoding
growth factors like epidermal growth factor (EGF) and fibroblast growth factor (FGF) could
stimulate cell proliferation and tissue repair in the damaged oral mucosa [27].

2.2. Challenges of mRNA Vaccine Delivery in Dentistry

Despite the promising prospects of mRNA vaccines, several challenges must be ad-
dressed before they can be applied in clinical dentistry. One of the primary concerns is
the stability of mRNA within the dynamic environment of the oral cavity [28]. The con-
stant presence of saliva, varying pH levels, and the microbial load of the mouth present
significant obstacles to mRNA stability [29]. Optimizing delivery mechanisms to ensure
that mRNA effectively targets oral tissues is crucial for success [30]. Furthermore, bal-
ancing immune activation is vital to avoid excessive inflammation, which could lead to
the exacerbation of existing conditions [31]. While preclinical studies have shown that
mRNA vaccines can modulate immune responses and support tissue regeneration, clinical
application in dentistry requires further research [32]. Identifying dental-specific antigens
and refining delivery systems for the oral cavity are key areas for investigation to improve
the effectiveness of mRNA vaccines in this field [33].

2.3. Risks, Ethical Considerations, and Future Directions

As with any emerging technology, the potential risks associated with mRNA vaccines
in dentistry must be thoroughly evaluated. While mRNA vaccines have shown promise in
other clinical trials, there is still concern about local inflammation and unintended immune
responses when applied in the oral cavity [34]. Comprehensive preclinical (in vitro and
animal models) and clinical studies focused on dental conditions are essential to determine
the safety and efficacy of these vaccines [35]. Moreover, ethical considerations, such as
patient safety, access to new treatments, and the use of regenerative technologies for non-
medical cosmetic procedures, need careful attention [36]. As research in this area progresses,
it will be crucial to ensure that mRNA vaccines are both safe and effective for widespread
dental use, paving the way for their integration into routine dental care [37].

3. Head and Neck Cancer
3.1. mRNA Vaccines in HPV-Related Head and Neck Cancer

RNA vaccines have recently gained attention in clinical research for their potential
to treat head and neck cancers, particularly those associated with human papillomavirus
(HPV) infections [38]. In preclinical studies, several types of mRNA vaccines are be-
ing explored, including self-amplifying mRNA, unmodified non-replicating mRNA, and
nucleoside-modified non-replicating mRNA vaccines [39]. These vaccines induce the pro-
duction of oncogenic proteins, such as Gde7, which triggers an immune response that
targets tumor-specific antigens [40] (Figure 2). Notably, the activation of CD8+ T lympho-
cytes has shown promise in halting tumor progression, surpassing the effectiveness of
earlier DNA-based Gde7 vaccines [41]. However, it is important to recognize that cancer
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immunotherapies often show early promise but can face challenges with reproducibility
and efficacy across different models [42].

Dent. J. 2025, 13, x FOR PEER REVIEW 4 of 19 
 

 

explored, including self-amplifying mRNA, unmodified non-replicating mRNA, and nu-
cleoside-modified non-replicating mRNA vaccines [39]. These vaccines induce the pro-
duction of oncogenic proteins, such as Gde7, which triggers an immune response that 
targets tumor-specific antigens [40] (Figure 2). Notably, the activation of CD8+ T lympho-
cytes has shown promise in halting tumor progression, surpassing the effectiveness of 
earlier DNA-based Gde7 vaccines [41]. However, it is important to recognize that cancer 
immunotherapies often show early promise but can face challenges with reproducibility 
and efficacy across different models [42]. 

 

Figure 2. The future of immunotherapy and personalized medicine in oncology using mRNA vac-
cines—the application of mRNA molecules causes the translation and synthesis of a desired protein 
which is then expressed on an APC using MHC I and MHC II molecules. Co-stimulation with CD28 
and TCR induces a strong CD4 and CD8 T-cell response, resulting in an immunostimulatory anti-
tumor effect and the slowing down of tumor progression. 

The delivery of mRNA vaccines in these studies is primarily conducted using two 
main methods: direct injection and ex vivo dendritic cell (DC) loading [43]. Direct injection 
offers a faster, more cost-effective approach, but it faces the challenge of RNA degradation 
by endogenous RNases in the body [44]. This can be mitigated by encapsulating the 
mRNA in lipid nanoparticles (LNPs) or cationic complexes [45]. These delivery systems 
improve stability, enhance cellular uptake, and support the immune activation necessary 
for vaccine efficacy [46]. On the other hand, ex vivo dendritic cell (DC) loading with 
mRNA vaccines offers the advantage of precise control over antigen presentation and a 
potentially enhanced immune response, but it is limited by the complexity, time consump-
tion, and high costs associated with isolating, modifying, and reintroducing DCs into the 
patient. 

3.2. Expanding mRNA Vaccines for Non-HPV-Related Head and Neck Cancers 

Although lipid nanoparticles (LNPs) have proven effective in enhancing the stability 
and uptake of mRNA vaccines, their use comes with some concerns. These include poten-
tial toxicity, unintended immune responses, and difficulties in achieving targeted delivery 
[47]. These risks are common to nanoparticle-based delivery systems, and careful explo-
ration is needed to optimize these methods for use in head and neck cancer treatments 

Figure 2. The future of immunotherapy and personalized medicine in oncology using mRNA
vaccines—the application of mRNA molecules causes the translation and synthesis of a desired
protein which is then expressed on an APC using MHC I and MHC II molecules. Co-stimulation with
CD28 and TCR induces a strong CD4 and CD8 T-cell response, resulting in an immunostimulatory
antitumor effect and the slowing down of tumor progression.

The delivery of mRNA vaccines in these studies is primarily conducted using two
main methods: direct injection and ex vivo dendritic cell (DC) loading [43]. Direct injection
offers a faster, more cost-effective approach, but it faces the challenge of RNA degradation
by endogenous RNases in the body [44]. This can be mitigated by encapsulating the mRNA
in lipid nanoparticles (LNPs) or cationic complexes [45]. These delivery systems improve
stability, enhance cellular uptake, and support the immune activation necessary for vaccine
efficacy [46]. On the other hand, ex vivo dendritic cell (DC) loading with mRNA vaccines
offers the advantage of precise control over antigen presentation and a potentially enhanced
immune response, but it is limited by the complexity, time consumption, and high costs
associated with isolating, modifying, and reintroducing DCs into the patient.

3.2. Expanding mRNA Vaccines for Non-HPV-Related Head and Neck Cancers

Although lipid nanoparticles (LNPs) have proven effective in enhancing the stability
and uptake of mRNA vaccines, their use comes with some concerns. These include potential
toxicity, unintended immune responses, and difficulties in achieving targeted delivery [47].
These risks are common to nanoparticle-based delivery systems, and careful exploration is
needed to optimize these methods for use in head and neck cancer treatments [48]. The
success of mRNA vaccines depends on balancing efficacy with safety and addressing these
concerns through further research [49].

While the current research primarily focuses on HPV-related head and neck cancers,
the potential to extend mRNA vaccines to treat non-HPV-related tumors represents a
significant opportunity [50].

Although immune responses in murine models have shown promise, further studies
are necessary to evaluate the magnitude, durability, and quality of these responses [51].
Long-term studies are crucial for determining the clinical relevance of these preclinical
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findings [52]. In conclusion, mRNA vaccines show considerable potential in the treatment
of head and neck cancers, especially those related to HPV [53]. Addressing the challenges re-
lated to delivery, immune response evaluation, and the inclusion of non-HPV-related tumors
will be key to advancing mRNA vaccines from preclinical models to clinical applications.

4. Regenerative Medicine
4.1. mRNA Vaccines in Regenerative Medicine: Mechanisms and Approaches

mRNA vaccines are also attracting attention and starting to scrape the surfaces of
the promising future of regenerative medicine by encoding various growth factors that, in
turn, cause cellular reprogramming and differentiation [54]. A major advantage of mRNA
therapies is their safety profile, which avoids the genomic integration risks associated with
traditional gene therapies, garnering increased attention [55]. In recent years, two methods
have been developed: the mRNA-induced differentiation of induced pluripotent stem cells
(iPSCs) and the direct reprogramming of somatic cells [56].

The iPSC-based method involves reprogramming somatic cells into a pluripotent
state, followed by differentiation into target cell types. While effective, this approach risks
tumorigenesis due to residual undifferentiated cells [57]. Conversely, direct reprogramming
bypasses the pluripotent stage, converting somatic cells directly into functional cells. This
method is safer but faces challenges in efficiency and scalability for clinical applications [58]
(Figure 3). mRNA therapies have demonstrated broad regenerative capacity across medi-
cal fields, with VEGF-A mRNA aiding cardiac repair and dystrophin-targeted therapies
advancing muscular regeneration in conditions like Duchenne muscular dystrophy [59,60].
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Figure 3. The principles of applying mRNA vaccines in regenerative medicine, as relevant to dentistry,
are consistent across medical fields. The cardiac model of myocardial fibrosis illustrates how mRNA
vaccines promote iPSC generation, reprogramming, and differentiation to regenerate functional
cardiomyocytes, improving heart contractility and left ventricular ejection fraction (LVEF). The goal
is to restore functional parenchyma. mRNA vaccines deliver key transcription factors, including
OCT4 and SOX2 to facilitate differentiation, and GATA4 and NKX2.5 to promote reprogramming.
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4.2. mRNA-Based Regenerative Therapies in Dentistry: Opportunities and Challenges

In dental care, mRNA regenerative therapies have exhibited potential in implantology
and bone grafting. Itaka et al. showed that mRNA encoding Runx2, a transcription factor for
osteogenesis, and VEGF, an angiogenesis-promoting factor, synergistically enhanced bone
regeneration in rats with jawbone defects [61]. Runx2 induces osteoblast differentiation,
while VEGF promotes angiogenesis, together creating a microenvironment conducive to
bone repair while markers like osteopontin and osteocalcin were significantly upregulated,
supporting osteogenic differentiation [62,63]. Similar studies by Zhang et al. (2023) and Xu
Q et al. (2019) corroborated these findings, highlighting the combined action of Runx2 and
VEGF in creating optimal environments for bone healing [64,65]. While the results by Zhang
et al. (2023) were promising, the study was limited to a preclinical trial involving a sample
of 30 rats [66]. Future steps should include trials on larger animal models to validate the
findings and optimization for subsequent clinical trials in humans. Furthermore, advances
in delivery technologies, such as lipid nanoparticles (LNPs), require further optimization
to balance stability, efficiency, and minimal immune activation [67]. Regulatory and ethical
considerations play a pivotal role in transitioning mRNA regenerative medicine from
research to clinical practice. Key priorities include ensuring long-term safety, mitigating
immune response risks, and addressing cost barriers to promote equitable access [68].
Advancing regenerative medicine will require integrating multidisciplinary efforts to
overcome these challenges and fully harness the potential of mRNA-based therapies.

5. Implantology
5.1. The Promise of mRNA Vaccines in Dental Implantology

The application of mRNA vaccines in dental implantology offers a significant oppor-
tunity to enhance therapeutic outcomes and improve patient recovery by targeting specific
molecular pathways, enabling immune responses, and promoting healing that was first
observed in orthopedics joint implants [69]. However, translating these promising results
from orthopedic applications to dental implantology requires addressing the oral cavity’s
unique conditions, such as microbial flora and bone quality [70]. mRNA vaccines aid in
reducing postoperative inflammation by modulating immune responses and promoting
the production of anti-inflammatory cytokines, which prevent excessive immune activa-
tion at the implant site [71]. The localized expression of VEGF enhances angiogenesis,
ensuring adequate blood supply, while BMPs (Bone Morphogenetic Proteins), particularly
BMP-2, stimulate osteoblast differentiation and promote mineralization, accelerating the
healing process [72]. This combined action fosters osteointegration, where new bone tissue
forms around the implant, improving long-term stability, reducing the risk of implant
failure, and minimizing infection rates [73]. Such potent anti-inflammatory, immunomod-
ulatory, and regenerative effects open new doors for RNA vaccines in innovating dental
implantology [74].

5.2. Research Progress and Challenges in mRNA Dental Applications

Recent preclinical studies offer promising evidence for the application of mRNA
vaccines in dental implantology. For instance, research by Liu et al. (2023) found that mRNA
encoding BMP-2 enhanced osteogenesis in periodontal ligament stem cells, suggesting the
potential for mRNA vaccines to improve dental implant integration [75]. Similarly, studies
by Zhou et al. (2021) showed that mRNA vaccines encoding BMP-2 accelerated healing
and improved implant stability in a rat model of dental implant failure [76]. These findings
support the use of mRNA vaccines to improve implant success, particularly in cases with
compromised bone quality or delayed healing.
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However, several challenges remain. A major concern is the risk of immune over-
activation, which could lead to excessive inflammation and interfere with healing [77].
Additionally, ensuring the stability and targeted delivery of mRNA vaccines in the oral cav-
ity is critical, as the oral environment presents challenges like fluctuating temperatures and
moisture. Lipid nanoparticles (LNPs), which have been used in other applications, show
promise, but further research is needed for optimization. To optimize lipid nanoparticles
(LNPs) for dental applications, the particle size should be carefully controlled between 50
and 150 nm to facilitate efficient cellular uptake while avoiding clearance by the reticuloen-
dothelial system. Additionally, modifying the lipid composition, such as using ionizable
lipids and PEGylated lipids, can enhance the stability of the LNPs in the oral cavity and
improve their ability to release mRNA at the target site, ensuring effective delivery to oral
tissues or bone for dental implant regeneration [78].

5.3. Future Directions and Clinical Translation

mRNA vaccines have significant potential to reform dental implantology by enhancing
osteointegration and tissue regeneration [79]. However, interpreting findings from ortho-
pedic applications to dental practice requires addressing the unique challenges of the oral
environment, such as microbial interactions and compatibility with dental materials [80].
Continued research is necessary to refine delivery systems, optimize vaccine formulations,
and assess the long-term safety and efficacy of these treatments [81]. The cost-effectiveness
of mRNA vaccines also needs to be carefully evaluated, as localized treatments for dental
implants could pose financial barriers.

6. Dental Caries
1. Pathogenesis overview: Dental caries is a multifactorial, biofilm-mediated, chronic

oral disease where Streptococcus mutans (S. mutans) is considered the most significant
etiological pathogen due to its exceptional ability to form biofilms [82]. Within the
plaque biofilm, S. mutans utilizes polysaccharides and produces lactic acid, forming
70% of the organic acids in the biofilm [83]. These acids lead to an imbalance in
remineralization and demineralization, favoring tooth demineralization, and, ulti-
mately, dental caries [84] (Figure 4). Thereby, inhibiting biofilm formation presents a
promising strategy in dental caries prophylaxis [85].

2. The Potential of RNA-Based Therapies in Caries Prevention

Recent techniques in the field of dentistry have increasingly prioritized disease pre-
vention and the conservation of tooth structure rather than surgical treatment [86]. Early
efforts, such as the 2006 development of oligodeoxyribonucleotides targeting gtfB mRNA,
demonstrated the ability to reduce glucan production and biofilm formation [87]. However,
limited progress in RNA-based approaches was made until recently. The 2024 study by
Shung Yu introduces a groundbreaking anti-caries strategy combining S. mutans antisense
vicK RNA (ASvicK) with Dimethylaminohexadecyl methacrylate (DMAHDM), providing
a synergistic effect in biofilm reduction. ASvicK RNA specifically targets and inhibits
the expression of vicK, a key gene involved in glucan synthesis, impairing the biofilm’s
structural integrity and virulence [88]. Concurrently, DMAHDM disrupts the bacterial cell
membrane by integrating into the lipid bilayer, increasing membrane permeability and
leading to bacterial cell death. This dual-target approach significantly enhances biofilm
control and cariogenicity reduction compared to single-target strategies. Additionally,
this combination minimizes enamel demineralization, as evidenced by in vitro studies,
demonstrating its potential to prevent caries at an early stage. This innovative approach
addresses key steps in the pathogenesis of dental caries and offers a promising, targeted
method for disease prevention, paving the way for RNA-based dental therapeutics.
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3. The Impact and Future of mRNA Anti-Caries Vaccines

Contrary to previous beliefs of it being only a pediatric issue, it was recognized that
the disease progresses in adulthood, where its incidence varies from 26% to 85% [89].
The cost-effectiveness of anti-caries vaccines, while initially high due to development and
administration costs, could lead to significant long-term savings. Traditional preventive
measures, such as fluoride toothpaste and regular dental visits, require ongoing effort
and maintenance [90]. An anti-caries vaccine could provide sustained immunity against
Streptococcus mutans, significantly reducing the need for continuous treatments (fillings
and root canals) and lowering the risk of complications like infective endocarditis and
bone loss [91]. This shift from treatment to prevention could transform oral health care by
offering a proactive, long-term solution [92].

The potential of mRNA vaccines to combat dental caries is particularly promising.
Emerging therapies, such as the combination of ASvicK RNA and DMAHDM, have shown
efficacy in managing caries in preclinical studies by targeting bacterial virulence and
metabolism [93]. These innovations highlight the transformative potential of mRNA
vaccines to reduce the global burden of caries [94].

However, their clinical readiness remains in its early stages, with challenges in research,
cost, and regulatory approval yet to be overcome.
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Figure 4. Pathogenesis of dental caries and a place for mRNA vaccines against S. mutans offer a
promising prophylactic option and significant long-term savings. S. mutans, the main pathogen
causing oral dysbiosis, utilizes polysaccharides such as glucans to produce lactic and other organic
acids that favor tooth demineralization and plaque formation. Other bacteria such as Lactobacillus
contribute to biofilm formation and communicate through “quorum sensing” mechanisms.

Barriers to implementation include public acceptance, logistics of vaccine administration
in dental settings, and concerns about antimicrobial resistance. Addressing these issues,
alongside progressing preclinical findings to clinical trials, will be critical for widespread
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adoption [95]. If successfully developed and approved, anti-caries vaccines could significantly
enhance long-term oral health, reduce treatment costs, and improve overall quality of life.

7. Periodontal Disease
1. Pathogenesis of Periodontal Disease: Established Mechanisms and Emerging Insight

Periodontal disease (PD) is an infection-induced chronic inflammatory disease char-
acterized by the presence of dysbiotic plaque biofilms and the progressive destruc-
tion of the tooth-supporting tissues—periodontium. The pathogenesis of PD is not
solely dependent on P. gingivalis. Instead, its role is amplified by interactions with
other pathogens, such as F. nucleatum, which stabilizes biofilms and enhances the
pathogenicity of P. gingivalis as well as Aggregatibacter actinomycetemcomitans, Fusobac-
terium nucleatum, or Eikenella corrodens [96]. The pathogens disrupt host immunity
(disruption of Toll-like receptor and complement function, subversion of neutrophils
and macrophages, etc.) all resulting in dysbiosis, immune dysregulation, hyper-
inflammation and bone resorption by matrix metalloproteinases secretion, RANKL
expression, ROS accumulation, and tissue necrosis [97]. Many attempts have been
made in searching for a successful treatment, but none of them have shown optimal
results. Considering that inflammatory host response plays a key role in pathogenesis,
some progress was achieved with anti-TNF-a and anti-IL-1 medications [98]. Never-
theless, the initial contributor to further steps of tissue destruction and inflammation is
the dysbiosis and P. gingivalis. Therefore, the most reasonable approach is to vaccinate
before colonization and the initiation of further pathological processes in the oral
cavity [99].

2. The Role of Immune Disruption

Studies reveal that strain diversity among various bacterial populations could explain
differences in disease progression, as less virulent strains often coexist in asymptomatic
individuals [100]. Additionally, host immune disruptions contribute significantly to disease
progression, with chronic inflammation being highly driven by imbalanced T-helper cell
responses (Th1 and Th17) and inadequate regulatory T-cell (Treg) activity [101]. Studies
like Vaernewyck et al. (2021) also demonstrated an overactive mucosal immune response,
but variability in immune outcomes due to bacterial strain differences highlights the need
for targeted research to refine vaccine specificity and immune modulation [102]. These
insights underline the necessity of considering both microbial interactions and immune
dysregulation to fully understand PD progression.

3. Host Susceptibility and Disease Progression

Host factors such as immune system competence, genetic predispositions, and environ-
mental exposures play a critical role in PD [103]. Dysregulated immune responses, marked
by chronic inflammation and insufficient resolution, are central to tissue damage [104].
Salivary secretory IgA (SIgA) has been identified as a protective factor that promotes a sym-
biotic relationship between the host and microbiota [105]. However, systemic conditions
like diabetes or lifestyle factors such as smoking can tip the balance, exacerbating disease
severity. This highlights the need for integrated research into host–microbe interactions to
develop personalized strategies for prevention and treatment.

4. mRNA Vaccines: Promising Innovations for PD Management

mRNA vaccines represent a novel approach to preventing PD by targeting key
pathogens and modulating immune responses. These vaccines encode antigens that elicit
protective immunity, aiming to prevent biofilm formation and mitigate inflammatory dam-
age. Preclinical studies, particularly in rodent models, have shown that mRNA vaccines
targeting P. gingivalis antigens can reduce alveolar bone loss and inflammation by inducing
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strong SIgA responses. Mucosal vaccines have demonstrated greater efficacy than systemic
ones, providing robust dual immunity in the oral cavity. However, challenges remain, par-
ticularly in balancing vaccine immunogenicity and inflammation. Lipid nanoparticle (LNP)
formulations have successfully enhanced antigen expression but also triggered excessive
cytokine responses. Refining vaccine formulations, such as by modifying mRNA signal
sequences as performed in SARS-CoV-2 vaccines, may enhance immunogenicity while
mitigating inflammatory side effects [106].

5. Translational Challenges and Future Directions

Despite promising preclinical results, significant hurdles remain before mRNA vac-
cines for PD can achieve clinical applicability. The polymicrobial nature of PD requires
multivalent vaccines to comprehensively target dysbiosis [107]. Additionally, preclinical
findings in larger animal models like dogs have been inconsistent, likely due to species-
specific microbiota differences and the complexity of PD pathogenesis [108]. Further
research should prioritize aligning vaccine designs with human pathophysiology [109].
Strategies to optimize mucosal vaccination, which has shown stronger IgA responses, are
critical. Future studies must also address questions about host susceptibility and environ-
mental factors to ensure broader applicability and effectiveness. While the complexity of
PD presents challenges, the combination of multivalent vaccine formulations and mucosal
administration offers a promising path forward for prevention and management [110–112].
A key challenge for future RNA vaccinations in periodontitis is achieving a robust im-
mune response without triggering the inflammatory reaction that underlies the condition’s
symptoms [113]. Optimizing vaccine formulations is crucial to enhance immunogenic-
ity while avoiding one of the primary pathogenic mechanisms—a strong inflammatory
response [114].

8. Conclusions
In conclusion, while mRNA vaccines offer substantial promise for the future of den-

tistry, their clinical application remains in the early stages, requiring further investigation
to address key challenges. The potential of mRNA technology in dental care, especially
in areas such as dental caries, periodontal disease, and dental implantology, is well es-
tablished [115] (Table 1). However, critical limitations must be addressed, including the
need for more robust clinical trials, the optimization of vaccine formulations for localized
applications, and the development of effective delivery systems to prevent adverse immune
responses [116]. Moreover, the translation of these technologies from preclinical models
to human clinical settings presents several hurdles, including regulatory approval and
public acceptance.

While the potential of mRNA vaccines in other medical fields provides a solid foun-
dation for their use in dentistry, it is essential that future research focuses specifically
on dental applications to ensure that the benefits outweigh the risks [117]. Ultimately,
mRNA vaccines have the capacity to reshape preventive and regenerative dental practices,
particularly in enhancing immune responses, preventing infection, and promoting tissue
regeneration, but a comprehensive understanding of their safety, efficacy, and long-term
outcomes will be necessary for their successful integration into clinical practice [118].
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Table 1. The table provides a detailed overview of mRNA applications in dentistry, spanning regenerative medicine, oncology, and the treatment of infectious and
inflammatory diseases. Key examples include mRNA encoding BMP-2 for tissue regeneration, mRNA vaccines for HPV-related cancers, antisense oligonucleotides
for bacterial virulence in dental caries, and immunomodulation for periodontal disease. It also highlights the challenges in optimizing lipid nanoparticle (LNP)
systems for mRNA delivery, emphasizing the need for further advancements to fully realize the therapeutic potential of mRNA-based approaches in dental medicine.

Application Field Study Name Study/Authors Study Type Key Findings Notes

Regenerative Applications
mRNA encoding BMP-2 enhanced

osteogenesis in periodontal ligament
stem cells

Liu et al. (2023)—[75] Pre-clinical/In-vitro
mRNA encoding BMP-2 enhanced

osteogenesis in periodontal ligament
stem cells.

Potential application for dental
regeneration.

BMP-2 mRNA accelerated healing
and implant stability in rat models of

dental implant failure
Zhou et al. (2021)—[76] Pre-clinical/In-vivo

BMP-2 mRNA accelerated healing and
implant stability in rat models of dental

implant failure.

Demonstrates osteoinductive
potential of mRNA in vivo.

HPV realated head and
neck cancers

BNT113 + pembrolizumab as
first-line treatment in patients with
unresectable recurrent/metastatic
HNSCC: Preliminary safety data

from AHEAD-MERIT

Klinghammer et al. (2022)—[53] Clinical trial

Preliminary safety data showing
promising outcomes when combining

BNT113 (mRNA vaccine) and
pembrolizumab for unresectable

metastatic HNSCC.

BNT113 targets HPV-16 E6 and E7
antigens, which are associated with
HPV-related head and neck cancers

(HNSCC).

Oral Cancer (non HPV
related tumors)

Personalized mRNA cancer vaccines
with immune checkpoint inhibitors:

A promising therapeutic approach in
oral cancer patients

Gheena S, Ezhilarasan D
(2023)—[16] Prelinical

The article explores the combination of
personalized mRNA cancer vaccines

with immune checkpoint inhibitors for
oral cancer, with preclinical findings

suggesting improved tumor immunity
and patient outcomes.

Focus on synergy between mRNA
vaccines and immune checkpoint

inhibitors for oral cancer treatment.

Dental Caries

Treatment of Streptococcus mutans
with antisense

oligodeoxyribonucleotides to gtfB
mRNA inhibits GtfB expression and

function

Guo, Q. Y., et al. (2006)—[87] Preclinical

Antisense oligodeoxyribonucleotides
targeting gtfB mRNA inhibited GtfB

expression and function in Streptococcus
mutans

Study focused on targeting bacterial
genes to reduce virulence.

Combination of ASvicK RNA and
DMAHDM inhibited biofilm

formation and reduced enamel
demineralization

Shung Yu (2024)—[89] Pre-clinical/In-vitro
Combination of ASvicK RNA and

DMAHDM inhibited biofilm formation
and reduced enamel demineralization.

Highlights potential of RNA-based
vaccines for caries management.

Periodontal Disease
Targeting Th17 cells: a promising

strategy to treat oral mucosal
inflammatory diseases

Wang et al., (2023)—[100] Pre-clinical

Targeting Th17 cells reduces
inflammation in oral mucosal diseases.

Inhibiting Th17 cell activity can
alleviate conditions like periodontal
disease by modulating the immune

response.

Potential therapeutic approach for
treating oral mucosal inflammation,

including periodontal disease.

Mucosal Vaccination Against
Periodontal Disease: Current Status

and Opportunities
Vaernewyck V (2021)—[102] Pre-clinical Mucosal vaccination induced strong

salivary IgA responses.
Suggests efficacy of mucosal mRNA

vaccines in the oral cavity.

Challenges Across
Applications

Development of mRNA Lipid
Nanoparticles: Targeting and

Therapeutic Aspects
Liu et al. (2024)—[118] Pre-clinical/In-vitro

Particle size, surface charge, and
ionizable lipids are critical in ensuring
efficient mRNA delivery and stability.

Insights into optimizing LNPs for
mRNA delivery
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