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Abstract—Sex assessment is an important step of the forensic
process. Dental remains are often the only remains left to
examine due to their resistance to decay and external factors.
Contemporary forensic odontology literature describes multiple
methods for sex assessment from mandibular parameters, all of
which require manual measurements and expert training. This
study aims to explore the applicability of deep learning and image
analysis methods to automate this task, thus allowing for easier
reproducibility of assessments, reduction of the time experts lose
on repetitive tasks, and potentially better performance. We have
evaluated state-of-the-art deep learning models and components
on the largest dataset of individual adult tooth x-ray images,
consisting of 76293 samples. This study also explores the usage
of decayed or structurally altered teeth, with which contemporary
methods struggle. Two types of models are constructed, a family
of models specialized for specific tooth types, and a general model
that can assess the sex from any tooth type. We examine the
performance of those models per tooth type and age group, as
well as the impact of decayed and structurally altered teeth. The
specialized models achieve an overall accuracy of 72.40%, and
the general model reaches an overall accuracy of 72.68%.

Index Terms—forensic odontology, x-ray image analysis, convo-
lutional neural network, deep learning, machine learning, image
processing

I. INTRODUCTION

Sex assessment is one of the first steps in the forensic
process [1]. Current forensic odontology literature proposes
methods based on manual measurements of mandibular pa-
rameters. Mastering those methods requires years of training
and education, and is performed only by trained experts.
Furthermore, this allows for human error to creep into the
results and reduces the overall reproducibility.

Skeletal remains can be used to assess the sex with near
100% accuracy [2]. Despite that, estimation from dental re-
mains is an important toolbox of a forensic expert, as those
remains show high resistance to external factors and decay, and
are often the only remains left to examine. External factors
include blunt force, fire, bacterial decomposition, and other
degenerative processes [3], [4], all of which have a lower
impact on dental remains. Those methods are used in a wide
variety of fields, ranging from legal proceedings to exploration
of demographic changes of historically important sites.

In this study, we specifically focus on sex assessment from
x-ray images of individual teeth. To that end, we’ve collected
the largest dataset in forensic odontology literature, which
consists of 76293 unique adult tooth images. This dataset

Fig. 1. Samples of individual teeth. Individual teeth are clipped from the
full panoramic dental x-ray image as indicated by expert annotators.

contains images of imperfect teeth that can contain various
illnesses, deformations, and dental alterations. As contem-
porary methods require manual measurements, and therefore
a high time investment, we’re exploring the applicability of
deep learning and image analysis methods for the automation
of this task. Deep learning models consisting of well-tested
and proven elements, like state-of-the-art convolutional neural
network architectures as feature extractors and the attention
mechanism, are evaluated for this task. Specialized models
for each tooth type are trained, as well as a general model
that assesses the sex from any tooth type. Additionally, we’ve
annotated a subset of the dataset with status annotations, and
we’ve evaluated the impact of dental alterations, decay, and
illness on the results.

II. RELATED WORKS

Sex assessment in forensic odontology is done through
measurements of different morphometric and nonmetrical pa-
rameters of the mandible. Early works have explored this topic
[5]–[9], as well as in contemporary literature [10].

Many studies in the literature are based on mandibular
parameters and with datasets of various sizes. A sample size of
40 can be found in [11], where three different approaches yield
accuracies of 72.5% to 95%. On the other hand, another study
with a sample size of 419 [12] achieves an overall accuracy of
70.9%. Despite the larger sample size, [12] has an imbalanced
dataset that is skewed toward female samples. An accuracy
of 80.2% is achieved again using mandibular parameters in
[1], but their dataset is heavily biased toward male samples.
Different mandibular parameters and combinations of those
parameters are used in literature, with [13] having an accuracy
of 85%, and [14] claiming an accuracy between 94% to 99%.
A different approach is the usage of geometric morphome-
tric methods in addition to 10 mandibular parameters, by
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which [11] achieve an accuracy of 95% with a dataset of
40 individuals. Those methods and parameters are verified
on different populations across the globe, and they match the
performance of the methods they’re based on [1], [15]–[21].
All cited studies worked with intact mandibles, without any
pathology, loss of mandibular molars, or anomalous molars
and teeth [12]. Deep learning-based approaches have also
been proposed for panoramic dental x-ray images, attaining
remarkable performance [22], [23].

Forensic odontology literature suggests that assessment of
sex from individual teeth is not recommended [24]. As per
literature, teeth are only a useful supplement for sex assess-
ment, as the accuracy of those methods is not sufficient [25],
not being able to reach even 80% [24]. A systematic review of
contemporary sex assessment literature can be found in [26].

III. DATA

Our dataset consists of 76293 individual tooth x-ray images
which have been taken from 2683 panoramic dental x-ray
images. Those 2683 panoramic dental x-ray images have been
taken from 2680 male and female individuals in the age range
from 19 to 85 years. Experts have annotated those images with
bounding boxes for each individual tooth and their designation
as per the FDI World Dental Federation notation (ISO 3950)
[27]. The dataset contains 44321 images of female teeth, and
31972 images of male teeth, which gives a female to male ratio
of 58% to 42%. The data is not evenly distributed in all age
groups, as the majority of samples fall in the age range of 20 to
55 years old. A detailed overview of the data per age group and
sex for individual tooth images and source panoramic dental
x-ray images can be seen in Table I. Examples of the images
in the dataset can be seen in Fig. 1.

The samples are collected from multiple locations in Croatia
and belong to the collection of the Department of Dental An-
thropology School of Dental Medicine University of Zagreb.
The use of this collection for research purposes has been
approved by the ethics committee School of Dental Medicine
University of Zagreb. All samples are anonymized, and no
personal data is stored alongside the images. An identity hash
is used to differentiate between images of different people.
The hash is not reversible, and no identifying information can
be gathered from it.

No filtering of teeth by any anomalies or alterations has
been done to the data. Teeth can have various changes, be
they natural (decay) or artificial (dental interventions). Those
changes can obstruct the view of the tooth morphology,
which makes them unsuitable to most current sex assessment
methods. The teeth in our dataset can have fillings, endo-
fillings, crowns, bridges, implants, carious lesions, appliances,
and they can be left behind roots. Of the 2683 panoramic
dental x-ray images, only 983 have alteration annotations.

This study uses two types of tooth notation systems. The
dataset uses the FDI World Dental Federation notation (ISO
3950) [27]. As teeth on the same jaw side can be considered
symmetrical, and as much of the literature in forensic odon-
tology does, we adopt a notation where teeth are identified by

TABLE I
DETAILED OVERVIEW OF DATA SAMPLES PER AGE GROUP.

Age group Orthopantomographs Individual teeth

Female Male Female Male

[18, 20) 12 8 367 250
[20, 25) 205 105 6239 4600
[25, 30) 257 147 7688 4409
[30, 35) 259 161 7641 4751
[35, 40) 232 168 6652 4832
[40, 45) 177 127 4986 3566
[45, 50) 115 97 3104 2667
[50, 55) 110 80 2851 2158
[55, 60) 76 61 1922 1540
[60, 65) 58 57 1464 1406
[65, 70) 26 33 647 840
[70, 75) 22 22 565 561
[75, 80) 6 11 152 299
[80, 85) 2 3 43 69
[85, 90) 0 1 0 24

Subtotal 1557 1126 44321 31972

Total 2683 76293

their jaw side and position. For example, canines on the upper
jaw (13 and 23 as per ISO 3950) are both labeled as ”Up-3”.

The dataset is split into three parts - train, validation, and
test. The data in the train set is used to fit the model. The
validation set is used to evaluate the performance of the
trained model for research decisions. While performance on
the validation set is used as an indicator for research decisions,
the test set is used for the final reported results. In other words,
the training dataset is used to fit the model, the validation
dataset is used to determine model hyperparameters, and the
test set is unseen by any experiment until the final model has
been trained. The size ratio between the train, validation, and
test set is 70% : 15% : 15%. Images with the same identity
hash were assigned to the same data subset.

In addition to these three sets, another subset of teeth
without alterations was constructed. While the models have
to handle all kinds of alterations, it is still interesting to
explore the model performance on perfect dentition. This
subset consists of 80 images, with 5 images per tooth type.
While this is a small sample size compared to the entire
dataset, it still gives insight into the influence of alterations
for sex assessment.

The original images are taken with a variety of orthopanto-
mographs, resulting in an image with a width between 1127
px to 3260 px and a height between 553 px and 1536 px. From
those images, individual tooth images are extracted as per their
annotated bounding box. Each individual tooth image can be
of a different size, but no image has a dimension larger than
512 px. All images are padded with black color to achieve a
size of 512x512 px across all images in the dataset.
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IV. METHOD

This study explores the capabilities of deep learning and
image analysis for automated sex assessment of x-ray images
of individual teeth. Deep learning, specifically convolutional
neural networks, has shown amazing capabilities in the field
of image analysis. To determine the potential of using deep
learning for forensic odontology, this study uses only well-
tested and proven architectures and techniques instead of
designing a lower-capacity custom network. While those types
of networks tend to produce acceptable results, they are often
too unstable for real-world use. As our dataset contains 76293
images, transfer learning [28] was not required. Preliminary
experiments have shown that using networks pretrained on
ImageNet did not improve the overall result, nor did it sig-
nificantly decrease training time.

The studied models consist of four main parts: the base
state-of-the-art convolutional neural network architecture, an
additional 1x1 convolutional layer to change the number of
feature maps in the final layer of the feature extractor, an
optional attention mechanism [29], and a two-layer fully-
connected network with an adjustable number of units in the
first fully connected layer.

For those components, reasonable hyperparameter spaces
have been determined. Those hyperparameter spaces are in
accordance with deep learning literature and other medical
image analysis studies. Random search is used [30].

After the hyperparameter search, the best-performing model
is selected for further training. The best model is chosen by its
performance on the validation dataset. Fine-tuning is a model
training process where training hyperparameters are adjusted
to maximize the performance of the model and to achieve those
final few percentage points. Those usually include adjustments
of the optimizer, like the introduction of a learning rate
schedule. Finally, the trained model is evaluated on the before
unseen test dataset.

Two types of experiments have been done for this study. One
type trained sex assessment models for a specific tooth type.
For example, one model would be trained only on maxillary
canines, and it would be evaluated only on maxillary canines.
A model family for each tooth type has been trained. The other
type of experiments explored sex assessment models that work
with any tooth type.

A. The model

As already mentioned, the model consists of four parts. Each
part is a proven and well-known component. The goal of this
study is to explore the applicability of deep learning methods
on the forensic odontology problem of sex assessment. While
a custom-made model might achieve marginally better results,
those solutions often provide brittle, overfit models.

The first part is the convolutional neural network archi-
tecture used as the feature extractor. The following archi-
tectures were tested: DenseNet201 [31], InceptionResNetV2
[32], ResNet50 [33], VGG16, VGG19 [34] and Xception
[35]. The viability of using ImageNet pretrained network
weights was evaluated in preliminary experiments. None of

the tested models showed any kind of improvement when
transfer learning was used. We have therefore decided to not
use pretrained weight as a starting point for training. Instead,
each network got randomly initialized as described in their
original paper.

An important note on those state-of-the-art architectures is
that they are designed with RGB images in mind. X-ray images
are grayscale. In technical terms, the network architectures
expect a 3-channel input, but our images are only single-
channel. We duplicate the value of our images across all 3
channels, effectively achieving a 3-channel grayscale image,
and thus allowing us to use SOTA network architectures.

The second part of the model consists of a single 1x1
convolutional layer. Our images are less diverse than images
found in ImageNet. Having the same amount of filters in the
final convolutional layer for ImageNet and for sex assessment
might lead to overfitting. The 1x1 convolution is used to scale
that final feature tensor in the channel dimension, allowing us
to downsize the capacity at the end of the feature extraction
network without having to do drastic changes to the state-of-
the-art architecture itself.

The third part of the model is an optional attention module.
Attention as a mechanism has been shown to be very suc-
cessful in cutting edge computer vision and natural language
processing [29], [36]. Given its success, it was included
in the hyperparameter search. To determine if the attention
mechanism is meaningfully contributing to the automation of
this particular problem, attention is optional.

The fourth and last part is the classification network. It
consists of two fully connected layers. The size of the first
layer is a hyperparameter, while the size of the second layer
is fixed to two units. The second layer represents the class
probabilities, of which there are two for this problem. Batch
normalization is used between those two layers.

All activations in the network are ReLU [37], except for the
last fully-connected layer which used the softmax activation.
The objective function is cross entropy [38].

B. Hyperparameter search

Random search is used for the search algorithm [30]. Ran-
dom search has benefits and guarantees that are sufficient for
this study. The approach is ”embarrassingly parallel”, allowing
for parallel execution of the experiments. Additionally, random
search gives us an easy to understand probability that the
solution is within a certain percentage of the best possible
solution in the selected search space. For the hyperparameter
search space, it is intuitively clear that there is some point that
performs best compared to all other points in the search space.
That solution does not have to be the global optimum, but it’s
the optimum within that selected subspace. So for a random
point, there’s a probability of p1 that the point is within p1
percent around the best solution. For n points, the probability
that all of them miss that subspace is (1− p1)n. Therefore, to
achieve a probability of p2 that at least one point is within p1
percent of the best solution, 1 − (1 − p1)

n > p2 holds true.
For p1 = 0.05 and p2 = 0.95, n ≥ 60. In this study, 256
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TABLE II
OVERVIEW OF MODEL HYPERPARAMETERS USED FOR THE GRID SEARCH.

Hyperparameter Search space Best value

Pretrained feature extractor

DenseNet201,
InceptionResNetV2,
ResNet50,
VGG16, VGG19,
Xception

VGG16

1x1 convolution channel size Between 5 to 1000 40
Attention mechanism Present or not present Not present
Fully-connected size Between 1 and 2048 128

experiments were done, indicating that the model found has
a high likelihood to be very close to the best solution in the
selected search space. Hyperparameters in this study determine
the model as described in Section IV-A. An overview of all
model hyperparameters can be seen in Table II.

Hyperparameter search is a computationally expensive op-
eration. To train the model sufficiently for the validation set
evaluation to be indicative of the final performance, we have
empirically determined that, for this problem, it is enough to
train the model on the entire train dataset with Adam [39]
as the optimizer, with a learning rate of 3.24 · 10−4 for 100
epochs.

C. Model fine tuning

Once the best model has been found, it is trained again
with a different training regime to achieve the best possible
performance. Models take longer to train this way, but they
eventually perform better than their quickly trained counter-
parts. Different training strategies were tested, but the best
performing regime uses SGD as the optimizer with a learning
rate schedule. The learning rate schedule used is cosine
annealing with warm restarts [40]. For each epoch, the learning
rate is determined as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur
Ti

π

))
Where ηt is the learning rate in epoch t, ηmin and ηmax are

the minimum and maximum learning rate respectively, Tcur is
the current epoch in the period, and Ti is the number of epochs
in a period.

For this study, the maximum learning rate is 10−3, the
minimum learning rate is 10−7, the period is set to 100 epochs,
and the model is trained for 1000 epochs in total.

D. Evaluation

Two different datasets are used for evaluation. For results
that are used to determine research decisions (for example,
hyperparameter selection), the performance is measured on
the validation dataset. The size of the validation dataset
differs between experiment types. For specialized models, each
validation dataset is of a different size, as there is a different
amount of images for each tooth type. Still, the validation
set is 15% of all images of that specific tooth type. For the
general model, the dataset is much bigger in total numbers, but

the validation set is still 15% of the total dataset. The results
reported in this study are obtained from the test dataset. Again,
the size in the number of images differs between tooth types,
but it is important to note that those images were not used
during any part of this study except for the final evaluation.

Additionally, the general model performance is evaluated
on a separate test set consisting of only healthy, unaltered
teeth. As that dataset contains only 5 samples per tooth type,
evaluation on the specialized models would not be indicative
and is therefore not performed. That dataset was generated
from the status annotations that some images contain, but they
were furthermore verified by dental experts. The evaluation
metric used for classification is accuracy.

V. RESULTS AND DISCUSSION

Hyperparameter search resulted in models of accuracy be-
tween 58% and 71%. The most successful model uses VGG16
as its feature extractor, it uses 40 feature maps in the final
convolutional layer, it uses no attention mechanism and it has
128 units in the first fully-connected layer.

When fine-tuned, models specialized by tooth type range in
accuracy from 69.04% to 76.66% for mandibular teeth, and
from 60.84% to 77.10% for maxillary teeth. For mandibular
teeth, the best performing teeth are canines (Down-3), and
the worst-performing teeth are lateral incisors (Down-2). For
maxillary teeth, the best performing teeth are again canines
(Up-3), and the worst-performing teeth are first molars (Up-6).
The specialized models achieve an overall accuracy of 72.40%.
Detailed results per age group are shown in Table III.

The general model can assess the sex from any tooth type.
The accuracy per tooth type for this model range from 72.22%
to 77.41% for mandibular teeth, and from 68.05% to 74.44%
for maxillary teeth. For mandibular teeth, the best performing
teeth are first molars (Down-6), and the worst-performing teeth
are central incisors (Down-1). For maxillary teeth, the best
performing teeth are second molars (Up-7), and the worst-
performing teeth are first premolars (Up-4). The general model
achieves an overall accuracy of 72.68%. Detailed results per
age group are shown in Table IV.

When evaluated on the subset of pristine teeth, 33/40 sam-
ples of the mandibular teeth got correctly classified, and 35/40
samples of maxillary teeth got correctly classified. In other
words, mandibular accuracy is 82.5%, maxillary accuracy is
87.5% and overall accuracy is 85%. While this is a much
smaller dataset, this result indicates that tooth decay and
dental interventions significantly hinder the process of sex
assessment.

As can be seen in Fig. 2 (left), there is no clear trend in
assessment accuracy in regards to age groups. Conversely, as
seen in Fig. 2 (right), a trend per tooth type is noticeable. For
both the general model and the specialized models, canines
seem most suitable for the task.

VI. CONCLUSION

In this study, we’ve shown that the forensic odontology
task of sex assessment from single tooth x-ray images can be
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TABLE III
ACCURACY OF SEX ASSESSMENT PER AGE GROUP OF THE MODELS SPECIALIZED TO SPECIFIC TOOTH TYPES. UP REFERS TO MAXILLARY TEETH, AND

DOWN REFERS TO MANDIBULAR TEETH.

Age 1 2 3 4 5 6 7 8

Up Down Up Down Up Down Up Down Up Down Up Down Up Down Up Down

[15, 20) 50.00% 100% 50.00% 83.33% 83.33% 66.67% 80.00% 100% 80.00% 83.33% 60.00% 80.00% 100% 66.67% 75.00% 100%
[20, 25) 73.47% 70.41% 78.35% 69.39% 77.55% 73.47% 75.00% 79.38% 65.26% 77.32% 69.15% 71.43% 75.51% 67.35% 78.75% 84.52%
[25, 30) 71.67% 73.95% 72.27% 69.49% 82.20% 85.71% 81.74% 78.81% 71.96% 81.25% 60.18% 80.00% 70.69% 81.42% 75.79% 77.08%
[30, 35) 78.23% 75.00% 72.58% 68.55% 81.97% 72.58% 75.86% 73.55% 73.04% 80.67% 57.94% 77.27% 70.34% 81.36% 70.65% 72.29%
[35, 40) 69.17% 62.71% 66.96% 69.75% 74.58% 82.20% 77.27% 72.03% 64.76% 70.69% 58.49% 60.92% 72.48% 74.23% 68.06% 63.38%
[40, 45) 72.63% 70.10% 78.35% 67.35% 71.88% 75.51% 74.71% 68.42% 75.61% 73.63% 65.28% 75.38% 66.67% 75.90% 70.00% 61.11%
[45, 50) 71.15% 65.38% 61.54% 59.62% 71.15% 76.47% 69.05% 71.15% 75.00% 63.27% 67.50% 68.75% 68.00% 75.56% 86.67% 73.33%
[50, 55) 75.00% 84.62% 71.15% 63.46% 66.00% 69.23% 72.34% 60.00% 50.00% 63.04% 45.45% 54.84% 76.09% 78.57% 61.90% 64.00%
[55, 60) 73.33% 62.50% 79.07% 68.75% 80.43% 72.92% 62.86% 73.33% 52.94% 88.10% 50.00% 64.00% 75.00% 76.32% 68.42% 55.00%
[60, 65) 83.72% 76.74% 82.50% 79.55% 78.95% 74.42% 56.25% 72.09% 86.67% 67.57% 70.37% 65.52% 64.29% 76.92% 73.33% 89.47%
[65, 70) 76.19% 72.73% 77.27% 68.18% 77.27% 65.00% 60.00% 66.67% 58.82% 84.21% 57.14% 72.73% 56.25% 46.15% 62.50% 50.00%
[70, 75) 78.57% 85.71% 92.86% 92.86% 85.71% 78.57% 69.23% 85.71% 80.00% 69.23% 75.00% 100% 55.56% 75.00% 50.00% 100%
[75, 80) 66.67% 83.33% 33.33% 66.67% 83.33% 100% 40.00% 83.33% 80.00% 50.00% 40.00% 75.00% 66.67% 40.00% 100% 50.00%

Total 73.62% 71.59% 73.19% 69.04% 77.10% 76.66% 73.86% 73.41% 69.09% 75.17% 60.84% 71.76% 70.83% 75.58% 72.85% 72.11%

TABLE IV
ACCURACY OF SEX ASSESSMENT PER AGE GROUP OF THE GENERAL MODEL. UP REFERS TO MAXILLARY TEETH, AND DOWN REFERS TO MANDIBULAR

TEETH.

Age 1 2 3 4 5 6 7 8

Up Down Up Down Up Down Up Down Up Down Up Down Up Down Up Down

[15, 20) 83.33% 83.33% 66.67% 100% 66.67% 100% 100% 100% 80.00% 83.33% 100% 80.00% 100% 83.33% 100% 75.00%
[20, 25) 66.33% 67.35% 61.86% 68.37% 71.43% 73.47% 66.67% 70.10% 66.32% 73.20% 64.89% 75.82% 77.55% 73.47% 73.75% 73.81%
[25, 30) 74.17% 70.59% 77.31% 76.27% 79.66% 75.63% 81.74% 79.66% 81.31% 79.46% 78.76% 83.81% 78.45% 85.84% 70.53% 79.17%
[30, 35) 68.55% 79.03% 74.19% 73.39% 78.69% 66.94% 68.10% 76.86% 80.00% 73.11% 69.16% 79.09% 68.64% 76.27% 65.22% 62.65%
[35, 40) 62.50% 70.34% 70.43% 72.27% 65.25% 73.73% 62.73% 66.10% 61.90% 68.10% 55.66% 70.11% 68.81% 61.86% 62.50% 73.24%
[40, 45) 71.58% 72.16% 79.38% 76.53% 72.92% 78.57% 66.67% 75.79% 71.95% 78.02% 80.56% 73.85% 75.86% 73.49% 76.67% 74.07%
[45, 50) 76.92% 71.15% 71.15% 73.08% 75.00% 62.75% 69.05% 67.31% 65.91% 65.31% 72.50% 78.12% 80.00% 73.33% 73.33% 70.00%
[50, 55) 71.15% 76.92% 73.08% 71.15% 68.00% 78.85% 65.96% 68.00% 67.50% 71.74% 61.36% 70.97% 69.57% 76.19% 61.90% 64.00%
[55, 60) 77.78% 68.75% 72.09% 75.00% 76.09% 68.75% 68.57% 66.67% 76.47% 66.67% 60.00% 76.00% 75.00% 78.95% 57.89% 85.00%
[60, 65) 88.37% 69.77% 72.50% 84.09% 84.21% 79.07% 65.62% 76.74% 63.33% 83.78% 77.78% 82.76% 78.57% 76.92% 66.67% 78.95%
[65, 70) 80.95% 68.18% 81.82% 72.73% 63.64% 65.00% 30.00% 80.95% 41.18% 84.21% 78.57% 72.73% 62.50% 69.23% 25.00% 41.67%
[70, 75) 92.86% 78.57% 64.29% 71.43% 78.57% 100% 53.85% 92.86% 50.00% 92.31% 100% 100% 88.89% 100% 75.00% 100%
[75, 80) 100% 83.33% 66.67% 100% 66.67% 83.33% 100% 83.33% 60.00% 50.00% 40.00% 100% 100% 40.00% 100% 100%

Total 71.98% 72.22% 72.68% 74.28% 73.79% 73.65% 68.05% 73.54% 70.54% 73.97% 69.66% 77.41% 74.44% 75.00% 68.46% 72.31%

[15, 20) [20, 25) [25, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 60) [60, 65) [65, 70) [70, 75) [75, 80)
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Fig. 2. Accuracy of general and specialized models per age group and tooth type. An overview that shows a) the accuracy of assessment for each tooth
type and b) he accuracy of assessment for each age group, as well as vertical bars showing the variance. The left bar represents the accuracy of the general
model, while the right bar shows the accuracy of each specialized models.

automated using deep learning. We’ve also shown that both
specialized models and a generalized model can perform well
on this task. Those models have been trained and verified on
the largest dataset of individual tooth x-ray images in litera-
ture. The models have no quality requirements on the teeth.
They can have illnesses, decay, or dental alterations, which
makes this approach suitable for real-world usage. When
controlling for changes in the structures of a tooth, experiments
seem to indicate that better performance is achievable, with the
accuracy reaching 85% without retraining of models. With an
overall accuracy of 72.68% for the general model and 72.40%
for the specialized models, without any quality requirements,
and an accuracy of 85% when controlling for tooth quality, the

proposed method matches human performance, shows great
potential for application, and opens up a new category of
damaged teeth for forensic tasks.
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