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Mijić, A.; Galić, N.; et al. Association

of Gut Lachnospiraceae and Chronic

Spontaneous Urticaria. Life 2023, 13,

1280. https://doi.org/10.3390/

life13061280

Academic Editor: Jacek C.

Szepietowski

Received: 4 May 2023

Revised: 25 May 2023

Accepted: 26 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Association of Gut Lachnospiraceae and Chronic
Spontaneous Urticaria
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Abstract: (1) Background: Chronic spontaneous urticaria (CSU) has been linked to the dysbiosis of
the gut microbiota. Furthermore, various studies have highlighted the anti-inflammatory properties
of short-chain fatty acids (SCFAs), whose production is primarily regulated by the gut microbiota.
However, only a few studies have investigated the role of major SCFA producers, such as Lach-
nospiraceae, in skin inflammatory diseases. (2) Goal: This study aimed to compare the abundance
of Lachnospiraceae between CSU patients and healthy controls (HCs). (3) Material and methods: In
this case–control study, 16S rRNA sequencing was performed to compare the composition of the gut
microbiome between 22 CSU patients and 23 HCs. (4) Results: Beta-diversity revealed significant
clustering (p < 0.05) between the CSU patients and HCs. Alpha diversity in the CSU group was
significantly decreased according to the Evenness index (p < 0.05). The linear discriminant analysis
effect size (LEfSe) identified the significant depletion of the Lachnospiraceae family in CSU patients.
(5) Conclusion: Our study revealed the dysbiosis of the gut microbiota in CSU patients, including
decreased levels of Lachnospiraceae members, responsible for SCFA production, suggesting that SCFAs
may contribute to immune dysfunction in the pathogenesis of CSU. We speculate that the modulation
of SCFAs could serve as a prospective additional option in CSU treatment.

Keywords: chronic spontaneous urticaria; gut microbiota; Lachnospiraceae; short-chain fatty acids

1. Introduction

Chronic spontaneous urticaria (CSU) is defined as the presence of urticaria, an-
gioedema, or both, for a period of at least 6 weeks, without identifiable specific triggers [1].
It is characterized by daily or almost daily signs and symptoms or an intermittent course [1].
CSU affects about 1% of the general population and there has been a noticeable increase in
the prevalence of this condition in recent years [2]. It is more frequently observed in young
and middle-aged adults, affecting women two times more often than men [3]. However,
children can be affected in the same proportion too [4]. The average duration of CSU is
commonly around 5 years [5], although, in 10–25% of patients, it persists for more than
5 years [6]. The treatment of CSU is focused on “symptom control”, targeting mast cell
mediators and activators such as histamine and autoantibodies. Second-generation non-
sedating H1 antihistamines are recommended as the initial treatment (up to four-fold dose),
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followed by omalizumab as a second-line treatment. Other therapies include cyclosporin,
glucocorticoids, and alternative treatments with limited evidence of efficacy [1]. Debilitat-
ing symptoms and the prolonged duration of the disease significantly impact individual’s
quality of life; moreover, it represents large costs in the healthcare system [1,2].

To date, several theories regarding the pathogenesis of CSU have been proposed.
However, none of them have been conclusively established. Research suggests that the
autoimmune concept, which involves the response of IgE autoantibodies to aeroallergens
or IgG antibodies to the patient’s own IgE or its high-affinity receptor-FcεRI, is the cause
of a significant number of CSU cases [7]. This finding indicates that the immune system
plays an important role in the development and persistence of this condition. However,
other factors, such as the cellular defects theory, various infections, pseudoallergies, stress,
coagulation, and vitamin D deficiency, have been proposed [8].

Recently, a growing number of studies have suggested a potential link between the
development of CSU and the dysbiosis of the gut microbiota [9–14]. The human gut
microbiota is a complex community of microorganisms, including bacteria, fungi, and
viruses, that reside in the human gastrointestinal tract [14–16]. It plays a vital role in
health maintenance, such as regulating the host immune system through the control of
metabolism, the improvement of gut integrity, the prevention of pathogen propagation,
and the modulation of components of both innate and adaptive immunity [15–19]. The
overuse of antibiotics, poor hygiene, a diet characterized by a low fiber intake and high
levels of fat and sugar, a sedentary lifestyle, pollution, and various toxins can disrupt the
natural balance of gut bacteria, leading to dysbiosis [20,21].

Dysbiosis refers to an imbalance in the diversity and composition of microorganisms in
the gut, which can lead to chronic inflammation, metabolic and immune dysfunction [20,21].
Alterations in the composition of gut microbiota have been linked to multiple infectious
and non-infectious diseases such as inflammatory bowel diseases, diabetes mellitus, obe-
sity, cardiovascular diseases, colorectal cancer, etc. [22,23]. Specifically, alterations in the
gut microbiota composition and function have been observed in individuals with CSU
compared to healthy individuals, suggesting the potential role of the gut microbiome in
the pathogenesis of this condition [9–14]. While the exact mechanisms underlying this
association are not yet fully understood, it is thought that the gut microbiota may impact
the immune system and contribute to the development of chronic inflammation, which can
trigger CSU symptoms [9–15].

One of the ways that the gut microbiome interacts with the host is through the pro-
duction of metabolic products, such as short-chain fatty acids (SCFAs) [24]. SCFAs such
as propionate, butyrate, and acetate are produced by gut bacteria through the degrada-
tion of non-digestible carbohydrates, vitamins, and immunomodulatory peptides [25].
Recent studies have reported the role of SCFAs in modulating the immune response
in inflammatory skin diseases [24]. It has been proposed that SCFAs alleviate inflam-
mation through the interaction and downregulation of components of both innate and
adaptive immune systems [25,26]. The genera of the Lachnospiraceae family, part of the
phylum Firmicutes, belongs to the core of the gut microbiota and are among the main
producers of SCFAs [16]. The human gut has been found to harbor several dominant
genera within the Lachnospiraceae family, including Blautia, Coprococcus, Dorea, Lachnospira,
Oribacterium, Roseburia, and L-Ruminococcus [16]. Furthermore, their anti-inflammatory
and immunomodulating effects on the human gut have been reported [27]. Therefore, there
is growing interest in the research of Lachnospiraceae’s role in maintaining gut homeostasis.
At present, there is an increasing number of studies reporting the role of SCFAs in chronic
inflammatory diseases [24]. There have been a limited number of studies investigating the
potential involvement of SCFA-producing bacteria in CSU [10–12]. However, it is important
to note that certain studies have examined a combined cohort of both CSU patients and
individuals with chronic inducible urticaria [11]. Liu et al. have reported a decrease in
the relative abundance of SCFA producers in CSU patients and suggested Subdoligranulum
and Ruminococcus bromii as potential markers for the diagnosis of CSU [10]. However,
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no research has specifically focused on Lachnospiraceae members, which are, along with
Ruminococceae, the main producers of SCFAs. A study by Lu et al. observed a depletion of
Lachnospiraceae in the gut microbiota of patients with alopecia areata [28]. Similarly, a study
on the gut–skin axis in hidradenitis suppurativa showed differences in gut abundances of
Lachnospiraceae between patients and healthy controls [29].

This study aimed to compare the composition and diversity of the gut microbiome
between CSU and healthy controls (HCs) with an emphasis on identifying differences in
the abundance of bacteria from the Lachnospiraceae family between the groups.

2. Materials and Methods

This case–control study was conducted at the Department of Dermatology and
Venereology, Sestre milosrdnice University Hospital Centre in Zagreb, Croatia, between
October 2020 and October 2021. A total of 45 participants were enrolled in the study,
including 22 patients with CSU and 23 healthy individuals. The study was approved
by the Research Ethics Committee of Sestre milosrdnice’s University Hospital Centre
in Zagreb (Approval No 003-06/20-03/008, 2 April 2020). All participants provided
written informed consent before participating in the study. The diagnosis of CSU was
established according to the EEACI guidelines [1]. Participants with certain conditions
that could affect gut microbiota composition were excluded from further investigation.
The exclusion criteria were as follows: patients who had taken systemic antibiotics and
commercial probiotics in the last 3 months, patients with inflammatory bowel diseases,
diabetes, obesity, psychiatric diseases or malignancy, and patients who were pregnant.
All 45 participants were instructed to provide gut samples at home and transfer them to
the Department of Dermatology and Venereology within 7 days of entering the study.
The participants followed the manufacturer’s instructions using the OM-200 OMNIgene
GUT sample collection kit (DNA Genotek, Ottawa, ON, Canada). To collect the fecal
samples, participants were instructed to use a spatula from the collection kit and transfer
the samples into the provided tubes containing stabilizing liquid. After closing the
tubes, participants were instructed to vigorously shake them for a minimum of 30 s to
ensure the proper mixing of the feces with the stabilizing liquid. The stabilizing liquid
rapidly homogenizes and stabilizes samples at the point of collection, ensuring that the
microbiota profiles accurately represent the in vivo state. The manufacturer guarantees
stabilized DNA at an ambient temperature for 60 days. All received samples were further
stored at −80 ◦C until DNA extraction.

2.1. DNA Extraction and 16S rRNA Gene Sequencing

Microbial DNA from stool was isolated using a Zymo BIOMICS DNA Miniprep Kit
#4300 (Zymo Research, Irvine, CA, USA), according to the manufacturer’s instructions [30].
Briefly, 250 mL of stool and 750 µL of Zymo BIOMICS Lysis Solution were put in ZR
BashingBead Lysis Tubes and homogenized using a FastPrep FP120 Cell Disrupter (Thermo
Electron Corporation, Milford, MA, USA) twice for 20 s, with a 30 s pause in between,
at a speed of 4 [31]. All the steps followed were the same as those mentioned in the
instruction manual, and at the end, the microbial DNA was eluted once in 50 µL of
ZymoBIOMICS DNase/RNase-free water. The DNA concentration was measured on
a Qubit 4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) using a Qubit
1× dsDNA High Sensitivity (HS) Assay Kit Q33230 (Thermo Fisher Scientific). DNA
aliquots with a 5 ng/µL concentration were used for sequencing the library preparation.
All extracted DNA samples were stored at −20 ◦C until further analysis.

The NGS libraries were prepared and sequenced following Illumina’s 16S metage-
nomic sequencing library preparation protocol (Part # 15,044,223 Rev. B; Illumina, San
Diego, CA, USA) [32]. First, the 16S RNA gene amplicons were prepared using the primer
pair targeting the V3–V4 hypervariable region of 16S rRNA genes [33]. Then, the PCR prod-
ucts were cleaned using MagSi-NGS PREP Plus (Magtivo, Nuth, The Netherlands), and
Illumina dual-index barcodes were added to the amplicons using a Nextera XT Index Kit
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v2 set A (Illumina, (FC-131-2001)). The final pooled normalized library (4 nM), including
controls, was diluted, denatured to 2 pM, and spiked with 15% PhiX (PhiX Control v3). A
paired-end 300 bp sequencing run (600 cycles) was performed using the MiSeq platform
(Illumina), using MiSeq Reagent Kit v3 chemicals (Illumina, (MS-102-3003)). All DNA quan-
tity measurements were performed on a Qubit 4.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientifc).

2.2. Bioinformatics and Statistical Analysis

To analyze the 16S rRNA gene sequencing data, we utilized the QIIME2 bioinformat-
ics platform [34]. The α-diversity of the bacterial populations, including the species rich-
ness and evenness, was calculated using several indices, including the Chao 1, Evenness,
Faith’s phylogenetic diversity (PD), Observed OTUs, Shannon, and Simpson indices. Fur-
thermore, we used Jaccard distance to determine the β-diversity between the two groups.
Linear discriminant analysis (LDA) effect size (LEfSe) was performed to identify sta-
tistically significant differences in the relative abundance of gut microbial families and
genera between the CSU patients and healthy individuals [35]. Only those LDA values
greater than 2.5 and a p-value less than 0.05 were considered significantly enriched.

The normality of continuous data was tested using the D’Agostino–Pearson test.
Data with a non-normal distribution were presented with a median (range). Categor-
ical data were presented as a number of samples (percentage). Mann–Whitney and
Chi-squared tests were used to test the differences between two groups of continu-
ous or categorical data, respectively. Statistical analyses were performed using Med
Calc v20.218 (Med Calc Software, Ostend, Belgium) and R software v3.4.4 (R Foun-
dation for Statistical Computing, Vienna, Austria). p-values < 0.05 were considered
statistically significant.

3. Results
3.1. Characterization of Participants

The study included 45 participants, 22 patients with CSU, and 23 HCs. The observed
groups did not exhibit significant differences in terms of gender and age. The basic
information regarding the demographic and clinical data of the included participants is
summarized in Tables 1–3. In terms of the appearance of urticaria, more than half of the
CSU patients reported hives every day. The majority of patients (91%) reported taking
second-generation non-sedating antihistamines daily.

Table 1. Characteristics of the CSU patients and healthy controls.

Variable CSU Patients (N = 22) Healthy Controls (N = 23) p-Value

Median age,
years (range) 42 (20–73) 40 (19–74) 0.928

Sex, n (%)
Male 6 (27.3%) 7 (30.4%)

0.817
Female 16 (72.7%) 16 (69.6%)

About one-third of the CSU patients had associated angioedema or atopic disorders.
Half of the patients had elevated TPO-Ab, and a significant proportion had elevated anti-Tg,
which are both markers of autoimmune thyroid disease. Vitamin D deficiency was highly
prevalent in CSU patients, with over two-thirds having hypovitaminosis.



Life 2023, 13, 1280 5 of 15

Table 2. Clinical parameters of CSU patients.

Variable CSU Patients (N = 22)

Duration of symptoms
6 weeks–5 months, n (%) 15 (68%)

6 months–12 months, n (%) 7 (32%)

Appearance of urticaria
everyday, n (%) 13 (59%)

2–4 times a week, n (%) 8 (36%)
once a week, n (%) 1 (5%)

Taking non-sedating antihistamines n (%) 20 (91%)
1 tablet daily, n (%) 5 (23%)
2 tablets daily, n (%) 8 (36%)
3 tablets daily, n (%) 3 (14%)
4 tablets daily, n (%) 4 (18%)

Table 3. Laboratory parameters of CSU patients.

Variable CSU Patients (N = 22)

Associated angioedema, n (%) 7 (32%)

Associated atopic disorders, n (%) 7 (32%)

Elevated Anti-Tg, n (%) 6 (27%)

Elevated TPO-Ab, n (%) 11 (50%)

Vitamin D deficiency, n (%) 15(68%)

Elevated IgE, n (%) 9 (41%)
Abbreviation: Anti-Tg—anti-thyroglobulin; TgTPO-Ab—thyroid peroxidase antibodies.

3.2. Composition of Gut Microbiota

After quality control, a total of 3,633,362 sequences were obtained from the fecal
samples of 45 subjects, resulting in an average of 80,741 sequences per sample. We examined
the bacterial communities and relative abundance in the two groups at different taxonomic
levels. At the phylum level, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
were found to be the dominant phyla in both CSU patients and healthy individuals. The
most abundant taxes at different levels are shown in Figure 1a–c. The relative abundance
of Firmicutes was increased in the HC group, while Bacteroidetes and Actinobacteria
were more abundant in the CSU group. At the class level, the relative abundance of
Clostridia was decreased in the CSU group. At the genus level, the relative abundances of
Bacteroides, Streptococcus, Agathobacter, and Bifidobacterium were increased in the CSU group,
while Roseburia, Faecalibacterium, Ruminococcus, Lachnospira, Prevotella, Blautia, Coprococcus
and Subdoligranulum were decreased in the CSU group, compared to HCs. To evaluate the
alterations in the gut microbial diversities between the CSU patients and HCs, we examined
the α-diversity using the Chao 1, Evenness, Faith’s phylogenetic diversity (PD), Observed
OTUs, Shannon and Simpson indices. Only the Evenness index showed a statistically
significant difference (p < 0.05) between the two groups (Figure 2a), while the other metrics
did not show a difference. The beta diversity, measured by the Jaccard distance between
the CSU patients and the HCs, revealed the significant clustering (p < 0.05) of the CSU and
HC groups. This finding supports the conclusion that there were notable differences in the
gut microbiota composition between the two groups, as illustrated in Figure 2b.
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Figure 1. (a) The composition of the gut microbiota in CSU patients and HCs. Relative abundance
at the phylum level. (b) Relative abundance at the class level. The most abundant taxa at the
class level in both groups were Clostridia and Bacteroidia. Clostridia taxa were decreased in the CSU
group. (c) Relative abundance at the genus level. The relative abundance of Bacteroides, Blautia,
and Bifidobacterium was increased in the CSU group, while Roseburia, Ruminococcus, Faecalibarium,
Lachnospira, Prevotella, Coprococcus and Subdoligranulum were decreased in the CSU group compared
to the HCs.

To explore the statistically significant differences in the relative abundance of gut
bacteria between the two groups, LEfSe was performed. A bar plot was utilized to present
the log10 LDA scores. At the family level, the results of the LEfSe analysis revealed that
Lactobacillaceae were significantly more abundant in the gut microbiota of CSU patients
compared to HCs. On the other hand, Barnesiellaceae, Butyricicoccaceae, and Carnobacteriaceae
were more abundant in the control group compared to the patient group (Figure 3a). At the
genus level, LEfSe identified a statistically significant increased abundance of bacteria from
the Lachnospiraceae family in the HC group, including Lachnospira, Roseburia, Ruminococcus,
Coporcoccus, and the Eubacterium eligens group (Figure 3b). On the other hand, the genus
Lactobacillus was significantly increased in the CSU group.



Life 2023, 13, 1280 8 of 15

Life 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

(c) 

Figure 1. (a) The composition of the gut microbiota in CSU patients and HCs. Relative abundance 
at the phylum level. (b) Relative abundance at the class level. The most abundant taxa at the class 
level in both groups were Clostridia and Bacteroidia. Clostridia taxa were decreased in the CSU group. 
(c) Relative abundance at the genus level. The relative abundance of Bacteroides, Blautia, and 
Bifidobacterium was increased in the CSU group, while Roseburia, Ruminococcus, Faecalibarium, Lach-
nospira, Prevotella, Coprococcus and Subdoligranulum were decreased in the CSU group compared to 
the HCs. 

 
 

(a) (b) 

HCs CSU

Re
la

tiv
e 

ab
un

da
nc

e 
(%

)

GENUS
f__Lachnospiraceae;g__Blautia
f__Prevotellaceae;g__Prevotella
f__Lachnospiraceae;g__[Ruminococcus]_torques
f__[E.]_coprostanoligenes;g__[E.]_coprostanoligenes
f__Streptococcaceae;g__Streptococcus
f__Sutterellaceae;g__Sutterella
f__Ruminococcaceae;g__Ruminococcus
f__Lachnospiraceae;g__Fusicatenibacter
f__Lachnospiraceae;g__Roseburia
f__Oscillospiraceae;g__UCG-002
f__Lachnospiraceae;Other
f__Lachnospiraceae;g__Agathobacter
f__uncultured;g__uncultured
f__Prevotellaceae;g__Prevotellaceae_NK3B31_group
f__Ruminococcaceae;g__Subdoligranulum
f__Tannerellaceae;g__Parabacteroides
f__Rikenellaceae;g__Alistipes
f__Ruminococcaceae;g__Faecalibacterium
f__Bacteroidaceae;g__Bacteroides

Figure 2. (a) Alpha diversity, measured by Evenness index. (b) Beta diversity, measured by Jaccard distance.
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4. Discussion

The gut microbiome has been the subject of intense research in recent years, and
there is growing evidence that its composition and diversity are associated with various
health and pathologic conditions, including CSU. In this study, we aimed to investigate
the composition and diversity of the gut microbiome in CSU patients in comparison with
HCs, using Illumina-based 16S rRNA gene sequencing. Our findings revealed significant
alterations in the composition and diversity of the gut microbiome in CSU patients, com-
pared to HCs. It is noteworthy that half of the included patients had elevated anti-TPO
antibodies and one-third had anti-Tg antibodies, which is in line with the concept of CSU
as an immune-mediated disease.
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To assess the differences in the diversity of the gut microbiome, we used different
indices for alpha and beta diversity. Alpha diversity refers to the diversity of bacterial
species within a single individual. Beta diversity, on the other hand, refers to the diversity of
bacterial species between individuals. Analysis of beta diversity showed that the microbiota
composition differed significantly between the groups, as was shown in the principal co-
ordinates analysis (PCoA). This clustering is in line with previously published papers on
gut microbiota in CSU [10,12,13]. We observed a significant decrease in the alpha diversity
of the gut microbiota in the CSU group, according to the Evenness index, while other indices
did not show statistically significant differences. We speculate that this bias may be due
to a large range of ages within the group, differences in dietary habits, and demographic
data. The CSU and HCs groups were mainly composed of Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria, consistent with similar studies. At the phylum level, the
relative abundance of Bacteroidetes and Actinobacteriota was slightly increased in the CSU
group, while phylum Firmicutes was decreased, which has also been reported in studies by
Wang et al. [11] and Liu et al. [10]. At the class level, Clostridia was relatively more abundant
in the HC group, while the relative abundance of Bacteroides was slightly more increased
in the CSU group. Genera of the Lachnospiraceae family, as well as Subdoligranulum, from
the Ruminococcaceae family, were relatively decreased in the CSU group. Of note, we found
decreased Prevotella spp. in the CSU group compared to healthy individuals, which is in
concordance with a study by Lu et al. [9]. Emerging studies have linked the increased
abundance of Prevotella with metabolic changes in the gut microbiota, resulting in chronic
inflammation [36,37]. In contrast, Hilty et al. reported a reduced abundance of Prevotella in
the lung microbiota of asthma patients and patients with chronic obstructive pulmonary
disease [38]. Furthermore, a study by Chen et al. investigated the relationship between
the composition of the gut microbiota and its ability to utilize dietary fiber. The results
showed that the Prevotella-dominated group had a higher fiber-utilizing capacity compared
to the Bacteroides-dominated group. The authors observed that a high-fiber diet increased
the abundance of Prevotella and the expression of fiber-utilizing genes [39]. Therefore, the
role of Prevotella in disease development requires further investigation.

Furthermore, we used LefSe analysis to identify specific bacterial taxa that were
significantly more abundant in either the CSU group or the healthy controls. We found
significant changes in the bacterial composition at the family and genus levels. Interestingly
we found statistically significant increased levels of Lactobacillaceae at the family level
and Lactobacillus at the genus level in the CSU group. On the other hand, Coprococcus,
Lachnospira, Roseburia, Lachnospiraceae NK4A136, Lachnospiraceae_UCG_003, Eubacterium
eligens, Erysipelotrichaceae_UCG_003, and Granulicatella were significantly more abundant in
the healthy controls. An increased abundance of Lactobacillaales in CSU patients has also
been reported in a study by Lu et al. [9], while Wang et al. reported an increased genus
of Lactobacillus in the CSU group [12]. The potential role of Lactobacillus in the prevention
and treatment of allergic diseases has been observed [40]. However, the results of clinical
trials and observational studies examining the efficacy of Lactobacillus administration in
reducing the risk of allergic diseases have been inconsistent. Some studies have reported
no significant effect of Lactobacillus supplementation on the incidence of eczema, asthma, or
cow’s milk allergy [41,42]. It is important to note that the inconsistencies in the findings of
these studies may be due to differences in the study design. Despite these mixed findings,
the potential beneficial role of Lactobacillus in preventing or treating allergic diseases should
not be overlooked. Further research is needed to better understand the mechanisms by
which Lactobacillus may exert its beneficial effects on the host.

Coprococcus, Lachnospira, Roseburia, Lachnospiraceae NK4A136, Lachnospiraceae_UCG_003,
and Eubacterium eligens are members of the Lachnospiraceae family, which belongs to the
clostridial cluster XIVa of the phylum Firmicutes [16,43]. The Lachnospiraceae family com-
prises strictly anaerobic bacteria, which belong to the core of gut microbiota and are one
of the most abundant bacteria in the human gut. About 10% of all microbes present in
the human gut are members of the Lachnospiraceae family [44]. Lachnospiraceae start to
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inhabit the intestinal lumen from birth, and their abundance increases during the host’s
life [16], so they have been detected in individuals of all age groups, from infants to elderly
people [27,45,46].

Due to its high abundance and lifelong association with the host, studies have empha-
sized the role of the Lachnospiraceae family in maintaining gut homeostasis and the overall
health of the host [27]. However, a reduction in Lachnospiraceae within the gut microbiota
has been associated with a range of conditions, including allergies, inflammatory bowel
disease, and metabolic disorders [16,47].

Along with Lactobacillaceae and Ruminococcaceae, Lachnospiraceae are the main bacteria
in charge of producing SCFAs [48–50].

SCFAs are a group of fatty acids with fewer than six carbon atoms that are produced
by the bacterial fermentation of non-digestible carbohydrates in the gut, such as resistant
starch, polysaccharide plant cell walls, soluble oligosaccharides, etc. [21,51,52]. The main
SCFAs produced by gut bacteria are acetate, propionate, and butyrate, with butyrate being
the most abundant. The main butyrate-producing bacteria in the human gut belong to the
phylum Firmicutes, including Faecalibacterium prausnitzii, Subdoligranulum, and Clostridium
leptum, which belong to the families Ruminococcaceae, Eubacterium rectale and Roseburia spp.
from the family Lachnospireacae [53,54]. Our study reported decreased genus levels of all
the above-mentioned bacteria in CSU patients compared to healthy individuals.

Following fermentation, the intestinal lumen contains millimolar concentrations of
short-chain fatty acids (SCFAs), which are absorbed by the epithelium through both active
and passive transport mechanisms. The SCFAs are subsequently transported to distant
organs and tissues via peripheral circulation [55,56]. SCFAs play various roles in host
metabolism and the immune system. They have an impact on the metabolism of lipids
and glucose. Furthermore, they are important for the integrity and protection of the
intestinal barrier, with butyrate being the dominant SCFA in charge of this function. Similar
beneficial effects in improving the intestinal barrier were found after the administration of
the probiotic Butyrococcus pullicaecorum to patients with Crohn’s disease [57]. Our study
also showed a lower abundance of Butyrococcus at the genus level in CSU patients.

SCFAs can mediate their effects via multiple mechanisms, including binding to
G-protein coupled receptors (GPCRs). GPCRs are the largest family of receptors with
seven-transmembrane domains. These receptors play a crucial role in regulating various
important cellular functions, including cell proliferation and survival, metabolism, and
neuronal signal transmission [58].

SCFAs bind to GPCRs such as GPR41, GPR41, and GPR109A. These receptors are
expressed in various cells, including neutrophils, leukocytes, skin cells, etc. [59,60]. SCFA-
mediated GPCRs initiate signaling pathways that play a vital role in regulating various
cellular responses, immune functions, and inflammatory processes; they, therefore, have
an important role in regulating the inflammatory response of the host [61]. Furthermore,
the anti-inflammatory effects of SCFAs, especially butyrate, have been attributed to their
ability to inhibit histone deacetylase (HDAC) activity. This leads to a decrease in the
production of pro-inflammatory mediators such as TNF-α, IL-6, and IL-12 while increasing
the production of anti-inflammatory mediators such as IL-10. Additionally, butyrate
has been found to promote FOXP3 expression in naïve CD4+ T-cells and facilitate their
differentiation into Tregs by inhibiting HDACs. Similarly, acetate, propionate, and butyrate
have been shown to modulate the immune response of dendritic cells, macrophages,
and Treg cells by inhibiting HDACs [62,63]. Treg cells can suppress pro-inflammatory
cytokines mediated by various T-cells, including Th2 cells, and can induce the secretion
of anti-inflammatory mediators, thereby reducing inflammation [14]. Reduced Treg cells
have been observed in patients with CSU [64–66]. GPCRs are also expressed in mast
cells, the key cells in the development of urticaria. SCFAs can bind to receptors on mast
cells, resulting in the inhibition of mast cell activation and inflammatory response [67,68].
Moreover, studies have shown that not only receptors such as GPR41, GPR43, or peroxisome
proliferator-activated receptors (PPARs) are responsible for mast cell inhibition, but that
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HDAC also independently inhibits their maturation and degranulation [69]. Liu et al.
suggest that decreased levels of Subdoligranulum and Ruminococcus bromii can promote
mast cell activation and degranulation, leading to the development of hives and itching
in CSU patients [10]. Recent studies have shown that CSU patients have lower levels
of fecal isobutyrate and serum butyrate compared to healthy individuals [11,12]. The
Roseburia/Eubacterium group and Lachnospiraceae NK4A136 group produce a high amount of
butyrate, which is involved in controlling gut inflammatory processes and immune system
maturation [70]. Our study reported a reduction in all the above-mentioned bacterial groups
in CSU patients, which is consistent with emerging studies suggesting that a reduction in the
number of SCFA-producing bacteria may contribute to the development of CSU. In addition
to SCFAs, several other mechanisms underlying the impact of Lachnospiraceae bacteria on
the gut microbiota have been proposed. Certain Lachnospiraceae species have been found to
utilize mucin, a glycoprotein from the protective mucus layer of the gut. By breaking down
mucin, Lachnospiraceae can promote the turnover of the mucus layer, which is important
for protecting the gut from pathogens [16]. Lachnospiraceae can engage in cross-feeding
interactions with other members of the gut microbiota by consuming the byproducts of
other bacteria and producing metabolites that benefit gut stability and functionality. They
also can promote Treg cells and downregulate pro-inflammatory cytokines and Toll-like
receptor 4 (TLR4) [16,45]. It is important to note that the specific effects of Lachnospiraceae
bacteria on the gut microbiota may vary depending on the species and strains within
this family. Additionally, individual variations in the gut microbial composition and host
factors can influence the impact of Lachnospiraceae on gut health. The gut microbiota
is influenced by various factors such as infections, antibiotics, age, lifestyle, diet, and
environmental exposures [20]. Moreover, changes in the composition of the gut microbiota
have been associated with many diseases and cancers [71]. Our findings suggest that
alterations in the gut microbiota may contribute to the pathogenesis of CSU. Furthermore,
we found a lower abundance of Lachnospiraceae, a core family of the gut microbiota known
for producing SCFAs, in CSU subjects. This study has several limitations: a small sample
size which may not be large enough for strong conclusions; the study was conducted
in a single center, which may limit the generalizability of the findings; and while the
study excluded participants with certain medical conditions and medication use, it did
not report information regarding the dietary habits of the participants, which can have a
significant impact on the gut microbiome. Considering the limitations encountered in our
study, we plan to expand our sample size and classify participants into groups based on
age and dietary habits. By undertaking these measures, our objective is to obtain a more
comprehensive representation of the diverse microbial profiles, thereby augmenting the
validity of our findings.

The gut microbiome and its interaction with the host are critical for maintaining the
health and homeostasis of the organism. SCFAs have been shown to play an important
role in the regulation of metabolism and the integrity of the intestinal barrier, as well as in
the modulation of the immune response. Moreover, SCFAs have shown promising results
in reducing inflammation in inflammatory skin diseases. Thus, the reduced abundance
of Lachnospiraceae, SCFA-producing bacteria, may contribute to the development of CSU.
Herein, we speculate that the modulation of SCFAs and SCFA-producing organisms could
be a potential additional option in the treatment of CSU.

These findings provide important insights into the potential role of gut microbiota in
the pathogenesis of CSU and highlight the need for continued research in this area.
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